Conditions | 9 |
Total Lines | 98 |
Code Lines | 44 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | import h5py |
||
14 | def polar_polarization_to_hdf5(polarization_root_file, hdf5_out_file): |
||
15 | """ |
||
16 | Converts the ROOT POLAR response into an HDF5 file so that users are not |
||
17 | dependent on ROOT. |
||
18 | |||
19 | :param polarization_root_file: The ROOT file from which to build the response |
||
20 | :param hdf5_out_file: The output HDF5 file name |
||
21 | """ |
||
22 | |||
23 | # create a few lists so that we can hold the values |
||
24 | |||
25 | energy = [] |
||
26 | degree = [] |
||
27 | angle = [] |
||
28 | |||
29 | energy_str = [] |
||
30 | degree_str = [] |
||
31 | angle_str = [] |
||
32 | |||
33 | # open the ROOT file |
||
34 | |||
35 | with open_ROOT_file(polarization_root_file) as f: |
||
36 | |||
37 | # This looks at all the info in the ROOT file |
||
38 | # It is gross because ROOT is gross. |
||
39 | |||
40 | tmp = [key.GetName() for key in f.GetListOfKeys()] |
||
41 | tmp = filter(lambda x: 'sim' in x, tmp) |
||
42 | for tmp2 in tmp: |
||
43 | _, x, y, z = tmp2.split('_') |
||
44 | |||
45 | energy.append(float(x)) |
||
46 | degree.append(float(y)) |
||
47 | angle.append(float(z)) |
||
48 | |||
49 | energy_str.append(x) |
||
50 | degree_str.append(y) |
||
51 | angle_str.append(z) |
||
52 | |||
53 | # There are duplicates everywhere. |
||
54 | # This makes sure we only grab what we need. |
||
55 | |||
56 | energy = np.array(np.unique(energy)) |
||
57 | degree = np.array(np.unique(degree)) |
||
58 | angle = np.array(np.unique(angle)) |
||
59 | |||
60 | energy_str = np.array(np.unique(energy_str)) |
||
61 | degree_str = np.array(np.unique(degree_str)) |
||
62 | angle_str = np.array(np.unique(angle_str)) |
||
63 | |||
64 | # just to get the bins |
||
65 | # must change this from ints later |
||
66 | |||
67 | file_string = 'sim_%s_%s_%s' % (energy_str[1], degree_str[1], angle_str[1]) |
||
68 | |||
69 | bins, _, hist = th2_to_arrays(f.Get(file_string)) |
||
70 | |||
71 | out_matrix = np.zeros((len(energy), len(angle), len(degree), len(hist))) |
||
72 | |||
73 | # Now we will build the HDF5 file. Much eaasier because the format is |
||
74 | # beautiful. |
||
75 | |||
76 | with h5py.File(hdf5_out_file, 'w', libver='latest') as database: |
||
77 | |||
78 | for i, x in enumerate(energy_str): |
||
79 | |||
80 | for j, y in enumerate(angle_str): |
||
81 | |||
82 | for k, z in enumerate(degree_str): |
||
83 | |||
84 | file_string = 'sim_%s_%s_%s' % (x, z, y) |
||
85 | |||
86 | _, _, hist = th2_to_arrays(f.Get(file_string)) |
||
87 | |||
88 | # Some beautiful matrix math |
||
89 | |||
90 | out_matrix[i, j, k, :] = hist |
||
91 | |||
92 | # write to the matrix extension |
||
93 | |||
94 | database.create_dataset('matrix', data=out_matrix, compression='lzf') |
||
95 | |||
96 | if np.min(bins) < 0: |
||
97 | # we will try to automatically correct for the |
||
98 | # badly specified bins |
||
99 | bins = np.array(bins) |
||
100 | |||
101 | bins += -np.min(bins) |
||
102 | |||
103 | assert np.min(bins) >= 0, 'The scattering bins have egdes less than zero' |
||
104 | assert np.max(bins) <= 360, 'The scattering bins have egdes greater than 360' |
||
105 | |||
106 | # Save all this out. We MUST write some docs describing the format at some point |
||
107 | |||
108 | database.create_dataset('bins', data=bins, compression='lzf') |
||
109 | database.create_dataset('pol_ang', data=angle, compression='lzf') |
||
110 | database.create_dataset('pol_deg', data=degree, compression='lzf') |
||
111 | database.create_dataset('energy', data=energy, compression='lzf') |
||
112 | |||
194 |