1
|
|
|
from astropy.io import fits |
|
|
|
|
2
|
|
|
from astropy.wcs import WCS |
3
|
|
|
from astropy.wcs.utils import proj_plane_pixel_area |
4
|
|
|
import numpy as np |
5
|
|
|
|
6
|
|
|
from util import cartesian |
|
|
|
|
7
|
|
|
from hawc_hal.sphere_dist import sphere_dist |
|
|
|
|
8
|
|
|
|
9
|
|
|
|
10
|
|
|
_fits_header = """ |
|
|
|
|
11
|
|
|
NAXIS = 2 |
12
|
|
|
NAXIS1 = %i |
13
|
|
|
NAXIS2 = %i |
14
|
|
|
CTYPE1 = 'RA---AIT' |
15
|
|
|
CRPIX1 = %i |
16
|
|
|
CRVAL1 = %s |
17
|
|
|
CDELT1 = -%f |
18
|
|
|
CUNIT1 = 'deg ' |
19
|
|
|
CTYPE2 = 'DEC--AIT' |
20
|
|
|
CRPIX2 = %i |
21
|
|
|
CRVAL2 = %s |
22
|
|
|
CDELT2 = %f |
23
|
|
|
CUNIT2 = 'deg ' |
24
|
|
|
COORDSYS= '%s' |
25
|
|
|
""" |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
def _get_header(ra, dec, pixel_size, coordsys, h, w): |
|
|
|
|
29
|
|
|
|
30
|
|
|
assert 0 <= ra <= 360 |
31
|
|
|
|
32
|
|
|
header = fits.Header.fromstring(_fits_header % (h, w, |
33
|
|
|
h / 2, ra, pixel_size, |
34
|
|
|
w / 2, dec, pixel_size, |
35
|
|
|
coordsys), |
36
|
|
|
sep='\n') |
37
|
|
|
|
38
|
|
|
return header |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
def _get_all_ra_dec(input_wcs, h, w): |
|
|
|
|
42
|
|
|
|
43
|
|
|
# An array of all the possible permutation of (i,j) for i=0..999 and j=0..999 |
44
|
|
|
|
45
|
|
|
xx = np.arange(0.5, h + 0.5, 1, dtype=np.int16) |
|
|
|
|
46
|
|
|
yy = np.arange(0.5, w + 0.5, 1, dtype=np.int16) |
|
|
|
|
47
|
|
|
|
48
|
|
|
_ij_grid = cartesian((xx, |
49
|
|
|
yy)) |
50
|
|
|
|
51
|
|
|
# Convert pixel coordinates to world coordinates |
52
|
|
|
world = input_wcs.all_pix2world(_ij_grid, 0, ra_dec_order=True) |
53
|
|
|
|
54
|
|
|
return world[:, 0], world[:, 1] |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
class FlatSkyProjection(object): |
|
|
|
|
58
|
|
|
|
59
|
|
|
def __init__(self, ra_center, dec_center, pixel_size_deg, npix_height, npix_width): |
|
|
|
|
60
|
|
|
|
61
|
|
|
assert npix_height % 2 == 0, "Number of height pixels must be even" |
62
|
|
|
assert npix_width % 2 == 0, "Number of width pixels must be even" |
63
|
|
|
|
64
|
|
|
if isinstance(npix_height, float): |
65
|
|
|
|
66
|
|
|
assert npix_height.is_integer(), "This is a bug" |
67
|
|
|
|
68
|
|
|
if isinstance(npix_width, float): |
69
|
|
|
|
70
|
|
|
assert npix_width.is_integer(), "This is a bug" |
71
|
|
|
|
72
|
|
|
self._npix_height = int(npix_height) |
73
|
|
|
self._npix_width = int(npix_width) |
74
|
|
|
|
75
|
|
|
assert 0 <= ra_center <= 360.0, "Right Ascension must be between 0 and 360" |
76
|
|
|
assert -90.0 <= dec_center <= 90.0, "Declination must be between -90.0 and 90.0" |
77
|
|
|
|
78
|
|
|
self._ra_center = float(ra_center) |
79
|
|
|
self._dec_center = float(dec_center) |
80
|
|
|
|
81
|
|
|
self._pixel_size_deg = float(pixel_size_deg) |
82
|
|
|
|
83
|
|
|
# Build projection, i.e., a World Coordinate System object |
84
|
|
|
|
85
|
|
|
self._wcs = WCS(_get_header(ra_center, dec_center, pixel_size_deg, 'icrs', npix_height, npix_width)) |
86
|
|
|
|
87
|
|
|
# Pre-compute all R.A., Decs |
88
|
|
|
self._ras, self._decs = _get_all_ra_dec(self._wcs, npix_height, npix_width) |
89
|
|
|
|
90
|
|
|
# Make sure we have the right amount of coordinates |
91
|
|
|
assert self._ras.shape[0] == self._decs.shape[0] |
92
|
|
|
assert self._ras.shape[0] == npix_width * npix_height |
93
|
|
|
|
94
|
|
|
# Pre-compute pixel area |
95
|
|
|
self._pixel_area = proj_plane_pixel_area(self._wcs) |
96
|
|
|
|
97
|
|
|
# Pre-compute an oversampled version to be used for PSF integration |
98
|
|
|
# if oversample and pixel_size_deg > 0.025: |
99
|
|
|
# |
100
|
|
|
# self._oversampled, self._oversample_factor = self._oversample(new_pixel_size=0.025) |
101
|
|
|
# |
102
|
|
|
# else: |
103
|
|
|
# |
104
|
|
|
# self._oversampled = self |
105
|
|
|
# self._oversample_factor = 1 |
106
|
|
|
|
107
|
|
|
# Cache for angular distances from a point (see get_spherical_distances_from) |
108
|
|
|
self._distance_cache = {} |
109
|
|
|
|
110
|
|
|
# def _oversample(self, new_pixel_size): |
111
|
|
|
# """Return a new instance oversampled by the provided factor""" |
112
|
|
|
# |
113
|
|
|
# # Compute the oversampling factor (as a float because we need it for the division down) |
114
|
|
|
# factor = float(np.ceil(self._pixel_size_deg / new_pixel_size)) |
115
|
|
|
# |
116
|
|
|
# if factor <= 1: |
117
|
|
|
# |
118
|
|
|
# # The projection is already with a smaller pixel size than the oversampled version |
119
|
|
|
# # No need to oversample |
120
|
|
|
# return self, 1 |
121
|
|
|
# |
122
|
|
|
# else: |
123
|
|
|
# |
124
|
|
|
# new_fp = FlatSkyProjection(self._ra_center, self._dec_center, |
125
|
|
|
# self._pixel_size_deg / factor, |
126
|
|
|
# self._npix_height * factor, |
127
|
|
|
# self._npix_width * factor, |
128
|
|
|
# oversample=False) |
129
|
|
|
# |
130
|
|
|
# return new_fp, int(factor) |
131
|
|
|
|
132
|
|
|
# @property |
133
|
|
|
# def oversampled(self): |
134
|
|
|
# return self._oversampled |
135
|
|
|
# |
136
|
|
|
# @property |
137
|
|
|
# def oversample_factor(self): |
138
|
|
|
# return self._oversample_factor |
139
|
|
|
|
140
|
|
|
@property |
141
|
|
|
def ras(self): |
142
|
|
|
""" |
143
|
|
|
:return: Right Ascension for all pixels |
144
|
|
|
""" |
145
|
|
|
return self._ras |
146
|
|
|
|
147
|
|
|
@property |
148
|
|
|
def decs(self): |
149
|
|
|
""" |
150
|
|
|
:return: Declination for all pixels |
151
|
|
|
""" |
152
|
|
|
return self._decs |
153
|
|
|
|
154
|
|
|
@property |
155
|
|
|
def ra_center(self): |
156
|
|
|
""" |
157
|
|
|
:return: R.A. for the center of the projection |
158
|
|
|
""" |
159
|
|
|
return self._ra_center |
160
|
|
|
|
161
|
|
|
@property |
162
|
|
|
def dec_center(self): |
163
|
|
|
""" |
164
|
|
|
:return: Declination for the center of the projection |
165
|
|
|
""" |
166
|
|
|
return self._dec_center |
167
|
|
|
|
168
|
|
|
@property |
169
|
|
|
def pixel_size(self): |
170
|
|
|
""" |
171
|
|
|
:return: size (in deg) of the pixel |
172
|
|
|
""" |
173
|
|
|
return self._pixel_size_deg |
174
|
|
|
|
175
|
|
|
@property |
176
|
|
|
def wcs(self): |
177
|
|
|
""" |
178
|
|
|
:return: World Coordinate System instance describing the projection |
179
|
|
|
""" |
180
|
|
|
return self._wcs |
181
|
|
|
|
182
|
|
|
@property |
183
|
|
|
def npix_height(self): |
184
|
|
|
""" |
185
|
|
|
:return: height of the projection in pixels |
186
|
|
|
""" |
187
|
|
|
return self._npix_height |
188
|
|
|
|
189
|
|
|
@property |
190
|
|
|
def npix_width(self): |
191
|
|
|
""" |
192
|
|
|
:return: width of the projection in pixels |
193
|
|
|
""" |
194
|
|
|
return self._npix_width |
195
|
|
|
|
196
|
|
|
@property |
197
|
|
|
def project_plane_pixel_area(self): |
198
|
|
|
""" |
199
|
|
|
:return: area of the pixels (remember, this is an equal-area projection so all pixels are equal) |
200
|
|
|
""" |
201
|
|
|
return self._pixel_area |
202
|
|
|
|
203
|
|
|
# def get_spherical_distances_from(self, ra, dec, cutout_radius): |
204
|
|
|
# """ |
205
|
|
|
# Returns the distances for all points in this grid from the given point |
206
|
|
|
# |
207
|
|
|
# :param ra: |
208
|
|
|
# :param dec: |
209
|
|
|
# :param cutout_radius: do not consider elements beyond this radius (NOTE: we use a planar approximation on |
210
|
|
|
# purpose, to make things fast, so the cut is not precise) |
211
|
|
|
# :return: (angular distances of selected points from (ra, dec), selection indexes) |
212
|
|
|
# """ |
213
|
|
|
# |
214
|
|
|
# # This is typically used sequentially on different energy bins, so we cache the result and re-use it |
215
|
|
|
# # if we already computed it |
216
|
|
|
# |
217
|
|
|
# key = (ra, dec, cutout_radius, self.ras.shape[0], self.decs.shape[0]) |
218
|
|
|
# |
219
|
|
|
# if key not in self._distance_cache: |
220
|
|
|
# |
221
|
|
|
# # In order to gain speed, we use a planar approximation (instead of using the harversine formula we assume |
222
|
|
|
# # plane geometry). This gets more and more unprecise the large the cutout radius, but we do not care here |
223
|
|
|
# |
224
|
|
|
# selection_idx = (((ra - self.ras)**2 + (dec - self.decs)**2) <= (1.2*cutout_radius)**2) # type: np.ndarray |
|
|
|
|
225
|
|
|
# |
226
|
|
|
# ds = sphere_dist(ra, dec, self.ras[selection_idx], self.decs[selection_idx]) |
227
|
|
|
# |
228
|
|
|
# # Refine selection by putting to False all elements in the mask at a distance larger than the cutout |
229
|
|
|
# # radius |
230
|
|
|
# fine_selection_idx = (ds <= cutout_radius) |
231
|
|
|
# selection_idx[selection_idx.nonzero()[0][~fine_selection_idx]] = False |
232
|
|
|
# |
233
|
|
|
# # This is to make sure we only keep cached the last result, and the dictionary does not grow indefinitely |
234
|
|
|
# self._distance_cache = {} |
235
|
|
|
# |
236
|
|
|
# self._distance_cache[key] = (ds[fine_selection_idx], selection_idx) |
237
|
|
|
# |
238
|
|
|
# return self._distance_cache[key] |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
The coding style of this project requires that you add a docstring to this code element. Below, you find an example for methods:
If you would like to know more about docstrings, we recommend to read PEP-257: Docstring Conventions.