Total Complexity | 307 |
Total Lines | 1402 |
Duplicated Lines | 0 % |
Changes | 2 | ||
Bugs | 1 | Features | 0 |
Complex classes like matrix often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use matrix, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
27 | class matrix extends nd{ |
||
28 | |||
29 | use ops,linAlg; |
||
30 | /** |
||
31 | * create empty 2d matrix for given data type |
||
32 | * @param int $row num of rows |
||
33 | * @param int $col num of cols |
||
34 | * @param int $dtype matrix data type float|double |
||
35 | * @return \Np\matrix |
||
36 | */ |
||
37 | public static function factory(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
38 | return new self($row, $col, $dtype); |
||
39 | } |
||
40 | |||
41 | /** |
||
42 | * create 2d matrix using php array |
||
43 | * @param array $data |
||
44 | * @param int $dtype matrix data type float|double |
||
45 | * @return \Np\matrix |
||
46 | */ |
||
47 | public static function ar(array $data, int $dtype = self::FLOAT): matrix { |
||
48 | if (is_array($data) && is_array($data[0])) { |
||
49 | $ar = self::factory(count($data), count($data[0]), $dtype); |
||
50 | $ar->setData($data); |
||
51 | unset($data); |
||
52 | return $ar; |
||
53 | } else { |
||
54 | self::_err('given array is not rank-2 or given is not an array'); |
||
55 | } |
||
56 | } |
||
57 | |||
58 | /** |
||
59 | * create one like 2d matrix |
||
60 | * @param int $row |
||
61 | * @param int $col |
||
62 | * @return \Np\matrix |
||
63 | */ |
||
64 | public static function ones(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
65 | $ar = self::factory($row, $col, $dtype); |
||
66 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
67 | $ar->data[$i] = 1; |
||
68 | } |
||
69 | return $ar; |
||
70 | } |
||
71 | |||
72 | /** |
||
73 | * Create Matrix with random values |
||
74 | * @param int $row |
||
75 | * @param int $col |
||
76 | * @param int $dtype Float|Double |
||
77 | * @return \Np\matrix |
||
78 | */ |
||
79 | public static function randn(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
80 | $ar = self::factory($row, $col, $dtype); |
||
81 | $max = getrandmax(); |
||
82 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
83 | $ar->data[$i] = rand() / $max; |
||
84 | } |
||
85 | return $ar; |
||
86 | } |
||
87 | |||
88 | /** |
||
89 | * Return 2d matrix with uniform values |
||
90 | * @param int $row |
||
91 | * @param int $col |
||
92 | * @param int $dtype |
||
93 | * @return \Np\matrix |
||
94 | */ |
||
95 | public static function uniform(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
102 | } |
||
103 | |||
104 | /** |
||
105 | * Return a zero matrix with the given dimensions. |
||
106 | * @param int $row |
||
107 | * @param int $col |
||
108 | * @param int $dtype |
||
109 | * @return \Np\matrix |
||
110 | */ |
||
111 | public static function zeros(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
112 | $ar = self::factory($row, $col, $dtype); |
||
113 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
114 | $ar->data[$i] = 0.0; |
||
115 | } |
||
116 | return $ar; |
||
117 | } |
||
118 | |||
119 | /** |
||
120 | * create a null like 2d matrix |
||
121 | * @param int $row |
||
122 | * @param int $col |
||
123 | * @return \Np\matrix |
||
124 | */ |
||
125 | public static function null(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
126 | $ar = self::factory($row, $col, $dtype); |
||
127 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
128 | $ar->data[$i] = null; |
||
129 | } |
||
130 | return $ar; |
||
131 | } |
||
132 | |||
133 | /** |
||
134 | * create a 2d matrix with given scalar value |
||
135 | * @param int $row |
||
136 | * @param int $col |
||
137 | * @param int|float|double $val |
||
138 | * @return \Np\matrix |
||
139 | */ |
||
140 | public static function full(int $row, int $col, $val, int $dtype = self::FLOAT): matrix { |
||
141 | $ar = self::factory($row, $col, $dtype); |
||
142 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
143 | $ar->data[$i] = $val; |
||
144 | } |
||
145 | return $ar; |
||
146 | } |
||
147 | |||
148 | /** |
||
149 | * create a diagonal 2d matrix with given 1d array; |
||
150 | * @param array $elements |
||
151 | * @return \Np\matrix |
||
152 | */ |
||
153 | public static function diagonal(array $elements, int $dtype = self::FLOAT): matrix { |
||
160 | } |
||
161 | |||
162 | /** |
||
163 | * Generate a m x n matrix with elements from a Poisson distribution. |
||
164 | * @param int $row |
||
165 | * @param int $col |
||
166 | * @param float $lambda |
||
167 | * @param int $dtype |
||
168 | * @return \Np\matrix |
||
169 | */ |
||
170 | public static function poisson(int $row, int $col, float $lambda = 1.0, int $dtype = self::FLOAT): matrix { |
||
171 | $ar = self::factory($row, $col, $dtype); |
||
172 | $max = getrandmax(); |
||
173 | $l = exp(-$lambda); |
||
174 | for ($i = 0; $i < $row; ++$i) { |
||
175 | for ($j = 0; $j < $col; ++$j) { |
||
176 | $k = 0; |
||
177 | $p = 1.0; |
||
178 | while ($p > $l) { |
||
179 | ++$k; |
||
180 | $p = $p * rand() / $max; |
||
181 | } |
||
182 | $ar->data[$i * $col + $j] = $k - 1; |
||
183 | } |
||
184 | } |
||
185 | return $ar; |
||
186 | } |
||
187 | |||
188 | /** |
||
189 | * Return a standard normally distributed random matrix i.e values |
||
190 | * between -1 and 1. |
||
191 | * @param int $row |
||
192 | * @param int $col |
||
193 | * @param int $dtype Description |
||
194 | * @return \Np\matrix |
||
195 | */ |
||
196 | public static function gaussian(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
224 | } |
||
225 | |||
226 | /** |
||
227 | * create an identity matrix with the given dimensions. |
||
228 | * @param int $n |
||
229 | * @param int $dtype |
||
230 | * @return matrix |
||
231 | * @throws \InvalidArgumentException |
||
232 | */ |
||
233 | public static function identity(int $n, int $dtype = self::FLOAT): matrix { |
||
245 | } |
||
246 | |||
247 | /** |
||
248 | * 2D convolution between a matrix ma and kernel kb, with a given stride. |
||
249 | * @param \Np\matrix $m |
||
250 | * @param int $stride |
||
251 | * @return matrix |
||
252 | */ |
||
253 | public function convolve(matrix $m, int $stride = 1): matrix { |
||
254 | return convolve::conv2D($this, $m, $stride); |
||
255 | } |
||
256 | |||
257 | /** |
||
258 | * Calculate the determinant of the matrix. |
||
259 | * @return float |
||
260 | */ |
||
261 | public function det(): float { |
||
262 | if (!$this->isSquare()) { |
||
263 | self::_err('determinant is undefined for a non square matrix'); |
||
264 | } |
||
265 | $lu = $this->lu(); |
||
266 | $nSwaps = $lu->p()->diagonalAsVector()->subtract($lu->p()->diagonalAsVector()->sum())->col - 1; |
||
267 | $detP = (-1) ** $nSwaps; |
||
268 | $detL = $lu->l()->diagonalAsVector()->product(); |
||
269 | $detU = $lu->u()->diagonalAsVector()->product(); |
||
270 | unset($lu); |
||
271 | return ($detP * $detL * $detU); |
||
272 | } |
||
273 | |||
274 | /** |
||
275 | * Return the trace of the matrix i.e the sum of all diagonal elements of a square matrix. |
||
276 | * @return float |
||
277 | */ |
||
278 | public function trace(): float { |
||
279 | if (!$this->isSquare()) { |
||
280 | self::_err('Error::matrix is not a squared can not Trace!'); |
||
281 | } |
||
282 | $trace = 0.0; |
||
283 | for ($i = 0; $i < $this->row; ++$i) { |
||
284 | for ($j = 0; $j < $this->col; ++$j) { |
||
285 | if ($i == $j) { |
||
286 | $trace += $this->data[$i * $this->col + $i]; |
||
287 | } |
||
288 | } |
||
289 | } |
||
290 | return $trace; |
||
291 | } |
||
292 | |||
293 | /** |
||
294 | * dignoalInterChange |
||
295 | */ |
||
296 | public function dignoalInterChange() { |
||
297 | for ($i = 0; $i < $this->row; ++$i) { |
||
298 | for ($j = 0; $j < $this->col; ++$j) { |
||
299 | $tmp = $this->data[$i * $this->col - $j]; |
||
300 | $this->data[$i * $this->col - $j] = $tmp; |
||
301 | } |
||
302 | } |
||
303 | } |
||
304 | |||
305 | //---------------Arthmetic Opreations----------------------------------- |
||
306 | |||
307 | /** |
||
308 | * multiply this matrix with another matrix|scalar element-wise |
||
309 | * Matrix Scalar\Matrix multiplication |
||
310 | * @param int|float|matrix|vector $m |
||
311 | * @return matrix|vector |
||
312 | */ |
||
313 | public function multiply(int|float|matrix|vector $m): matrix|vector { |
||
314 | if ($m instanceof self) { |
||
315 | return $this->multiplyMatrix($m); |
||
316 | } else if ($m instanceof vector) { |
||
317 | return $this->multiplyVector($m); |
||
318 | } else { |
||
319 | return $this->scale($m); |
||
320 | } |
||
321 | } |
||
322 | |||
323 | /** |
||
324 | * |
||
325 | * @param \Np\vector $v |
||
326 | * @return matrix |
||
327 | */ |
||
328 | protected function multiplyVector(vector $v): matrix { |
||
329 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
330 | $ar = matrix::factory($this->row, $this->col, $this->dtype); |
||
331 | for ($i = 0; $i < $this->row; ++$i) { |
||
332 | for ($j = 0; $j < $this->col; ++$j) { |
||
333 | $ar->data[$i * $this->col + $j] = $v->data[$j] * $this->data[$i * $this->col + $j]; |
||
334 | } |
||
335 | } |
||
336 | return $ar; |
||
337 | } |
||
338 | } |
||
339 | |||
340 | /** |
||
341 | * |
||
342 | * @param \Np\matrix $m |
||
343 | * @return matrix |
||
344 | */ |
||
345 | protected function multiplyMatrix(matrix $m): matrix { |
||
346 | if ($this->checkDtype($this, $m) && $this->checkShape($this, $m)) { |
||
347 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
348 | for ($i = 0; $i < $this->row; ++$i) { |
||
349 | for ($j = 0; $j < $this->col; ++$j) { |
||
350 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] * $m->data[$i * $this->col + $j]; |
||
351 | } |
||
352 | } |
||
353 | return $ar; |
||
354 | } |
||
355 | } |
||
356 | |||
357 | /** |
||
358 | * Sum of Rows of matrix |
||
359 | * @return vector |
||
360 | */ |
||
361 | public function sumRows(): vector { |
||
362 | $vr = vector::factory($this->row, $this->dtype); |
||
363 | for ($i = 0; $i < $this->row; ++$i) { |
||
364 | $sum = 0.0; |
||
365 | for ($j = 0; $j < $this->col; ++$j) { |
||
366 | $sum += $this->data[$i * $this->col + $j]; |
||
367 | } |
||
368 | $vr->data[$i] = $sum; |
||
369 | } |
||
370 | return $vr; |
||
371 | } |
||
372 | |||
373 | /** |
||
374 | * Sum of two matrix, vector or a scalar to current matrix |
||
375 | * |
||
376 | * @param int|float|matrix|vector $m |
||
377 | * @return matrix |
||
378 | */ |
||
379 | public function sum(int|float|matrix|vector $m): matrix { |
||
380 | if ($m instanceof self) { |
||
381 | return $this->sumMatrix($m); |
||
382 | } elseif ($m instanceof vector) { |
||
383 | return $this->sumVector($m); |
||
384 | } else { |
||
385 | return $this->sumScalar($m); |
||
386 | } |
||
387 | } |
||
388 | |||
389 | protected function sumScalar(int|float $s): matrix { |
||
390 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
391 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
392 | $ar->data[$i] = $this->data[$i] + $s; |
||
393 | } |
||
394 | return $ar; |
||
395 | } |
||
396 | |||
397 | protected function sumMatrix(matrix $m): matrix { |
||
398 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
399 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
400 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
401 | $ar->data[$i] = $this->data[$i] + $m->data[$i]; |
||
402 | } |
||
403 | return $ar; |
||
404 | } |
||
405 | } |
||
406 | |||
407 | protected function sumVector(vector $v): matrix { |
||
408 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
409 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
410 | for ($i = 0; $i < $this->row; ++$i) { |
||
411 | for ($j = 0; $j < $this->col; ++$j) { |
||
412 | $ar->data[$i * $this->col + $j] = $v->data[$j] + $this->data[$i * $this->col + $j]; |
||
413 | } |
||
414 | } |
||
415 | return $ar; |
||
416 | } |
||
417 | } |
||
418 | |||
419 | /** |
||
420 | * subtract another matrix, vector or a scalar to this matrix |
||
421 | * @param int|float|matrix|vector $d matrix|$scalar to subtract this matrix |
||
422 | * @return \Np\matrix |
||
423 | */ |
||
424 | public function subtract(int|float|matrix|vector $d): matrix { |
||
425 | if ($d instanceof self) { |
||
426 | return $this->subtractMatrix($d); |
||
427 | } elseif ($d instanceof vector) { |
||
428 | return $this->subtractVector($d); |
||
429 | } else { |
||
430 | return $this->subtractScalar($d); |
||
431 | } |
||
432 | } |
||
433 | |||
434 | protected function subtractScalar(int|float $s): matrix { |
||
435 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
436 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
437 | $ar->data[$i] = $this->data[$i] - $s; |
||
438 | } |
||
439 | return $ar; |
||
440 | } |
||
441 | |||
442 | /** |
||
443 | * |
||
444 | * @param matrix $m |
||
445 | * @return matrix |
||
446 | */ |
||
447 | protected function subtractMatrix(matrix $m): matrix { |
||
448 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
449 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
450 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
451 | $ar->data[$i] = $this->data[$i] - $m->data[$i]; |
||
452 | } |
||
453 | return $ar; |
||
454 | } |
||
455 | } |
||
456 | |||
457 | /** |
||
458 | * |
||
459 | * @param vector $v |
||
460 | * @return matrix |
||
461 | */ |
||
462 | protected function subtractVector(vector $v): matrix { |
||
463 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this,$v)) { |
||
464 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
465 | for ($i = 0; $i < $this->row; ++$i) { |
||
466 | for ($j = 0; $j < $this->col; ++$j) { |
||
467 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] - $v->data[$j]; |
||
468 | } |
||
469 | } |
||
470 | return $ar; |
||
471 | } |
||
472 | } |
||
473 | |||
474 | /** |
||
475 | * |
||
476 | * @param vector $v |
||
477 | * @return matrix |
||
478 | */ |
||
479 | public function subtractColumnVector(vector $v): matrix { |
||
480 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
481 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
482 | for ($j = 0; $j < $this->col; ++$j) { |
||
483 | for ($i = 0; $i < $this->row; ++$i) { |
||
484 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] - $v->data[$i]; |
||
485 | } |
||
486 | } |
||
487 | return $ar; |
||
488 | } |
||
489 | } |
||
490 | |||
491 | /** |
||
492 | * Return the division of two elements, element-wise. |
||
493 | * @param int|float|matrix $d |
||
494 | * @return matrix |
||
495 | */ |
||
496 | public function divide(int|float|matrix|vector $d): matrix { |
||
497 | if ($d instanceof self) { |
||
498 | return $this->divideMatrix($d); |
||
499 | } elseif ($d instanceof vector) { |
||
500 | return $this->divideVector($d); |
||
501 | } else { |
||
502 | return $this->divideScalar($d); |
||
503 | } |
||
504 | } |
||
505 | |||
506 | protected function divideMatrix(matrix $m): matrix { |
||
507 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
508 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
509 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
510 | $ar->data[$i] = $this->data[$i] / $m->data[$i]; |
||
511 | } |
||
512 | return $ar; |
||
513 | } |
||
514 | } |
||
515 | |||
516 | protected function divideVector(vector $v): matrix { |
||
517 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
518 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
519 | for ($i = 0; $i < $this->row; ++$i) { |
||
520 | for ($j = 0; $j < $this->col; ++$j) { |
||
521 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] / $v->data[$j]; |
||
522 | } |
||
523 | } |
||
524 | return $ar; |
||
525 | } |
||
526 | } |
||
527 | |||
528 | protected function divideScalar(int|float $s): matrix { |
||
529 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
530 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
531 | $ar->data[$i] = $this->data[$i] / $s; |
||
532 | } |
||
533 | return $ar; |
||
534 | } |
||
535 | |||
536 | /** |
||
537 | * |
||
538 | * Raise this matrix to the power of the element-wise entry in another matrix. |
||
539 | * |
||
540 | * @param int|float|matrix $m |
||
541 | * @return matrix |
||
542 | */ |
||
543 | public function pow(int|float|matrix|vector $d): matrix { |
||
544 | if ($d instanceof self) { |
||
545 | return $this->powMatrix($d); |
||
546 | } else if ($d instanceof vector) { |
||
547 | return $this->powVector($d); |
||
548 | } else { |
||
549 | return $this->powScalar($d); |
||
550 | } |
||
551 | } |
||
552 | |||
553 | protected function powMatrix(matrix $m): matrix { |
||
554 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
555 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
556 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
557 | $ar->data[$i] = $this->data[$i] ** $m->data[$i]; |
||
558 | } |
||
559 | return $ar; |
||
560 | } |
||
561 | } |
||
562 | |||
563 | protected function powVector(vector $v): matrix { |
||
564 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
565 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
566 | for ($i = 0; $i < $this->row; ++$i) { |
||
567 | for ($j = 0; $j < $this->col; ++$j) { |
||
568 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] ** $v->data[$j]; |
||
569 | } |
||
570 | } |
||
571 | return $ar; |
||
572 | } |
||
573 | } |
||
574 | |||
575 | protected function powScalar(int|float $s): matrix { |
||
576 | $ar = $this->copy(); |
||
577 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
578 | $ar->data[$i] **= $s; |
||
579 | } |
||
580 | return $ar; |
||
581 | } |
||
582 | |||
583 | /** |
||
584 | * Calculate the modulus i.e remainder of division between this matrix and another matrix. |
||
585 | * @param int|float|matrix|vector $d |
||
586 | * @return matrix |
||
587 | */ |
||
588 | public function mod(int|float|matrix|vector $d): matrix { |
||
589 | if ($d instanceof self) { |
||
590 | $this->modMatrix($d); |
||
591 | } else if ($d instanceof vector) { |
||
592 | $this->modVector($d); |
||
593 | } else { |
||
594 | $this->modScalar($d); |
||
595 | } |
||
596 | } |
||
597 | |||
598 | protected function modMatrix(matrix $m): matrix { |
||
599 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
600 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
601 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
602 | $ar->data[$i] = $this->data[$i] % $m->data[$i]; |
||
603 | } |
||
604 | return $ar; |
||
605 | } |
||
606 | } |
||
607 | |||
608 | protected function modVector(vector $v): matrix { |
||
609 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
610 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
611 | for ($i = 0; $i < $this->row; ++$i) { |
||
612 | for ($j = 0; $j < $this->col; ++$j) { |
||
613 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] % $v->data[$j]; |
||
614 | } |
||
615 | } |
||
616 | return $ar; |
||
617 | } |
||
618 | } |
||
619 | |||
620 | protected function modScalar(int|float $s): matrix { |
||
621 | $ar = $this->copy(); |
||
622 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
623 | $ar->data[$i] %= $s; |
||
624 | } |
||
625 | return $ar; |
||
626 | } |
||
627 | |||
628 | /** |
||
629 | * Return the element-wise reciprocal of the matrix. |
||
630 | * |
||
631 | * @return matrix |
||
632 | */ |
||
633 | public function reciprocal(): matrix { |
||
634 | return self::ones($this->row, $this->col, $this->dtype)->divideMatrix($this); |
||
635 | } |
||
636 | |||
637 | /** |
||
638 | * |
||
639 | * @param int|float $d |
||
640 | * @return bool |
||
641 | */ |
||
642 | public static function is_zero($d): bool { |
||
643 | if (abs($d) < self::EPSILON) { |
||
644 | return true; |
||
645 | } |
||
646 | return false; |
||
647 | } |
||
648 | |||
649 | /** |
||
650 | * is row zero |
||
651 | * @param int $row |
||
652 | * @return bool |
||
653 | */ |
||
654 | public function is_rowZero(int $row): bool { |
||
655 | for ($i = 0; $i < $this->col; ++$i) { |
||
656 | if ($this->data[$row * $this->col + $i] != 0) { |
||
657 | return false; |
||
658 | } |
||
659 | } |
||
660 | return true; |
||
661 | } |
||
662 | |||
663 | /** |
||
664 | * |
||
665 | * @return bool |
||
666 | */ |
||
667 | public function has_ZeroRow(): bool { |
||
668 | for ($i = 0; $i < $this->row; ++$i) { |
||
669 | if ($this->is_rowZero($i)) { |
||
670 | return true; |
||
671 | } |
||
672 | } |
||
673 | return false; |
||
674 | } |
||
675 | |||
676 | /** |
||
677 | * Transpose the matrix i.e row become cols and cols become rows. |
||
678 | * @return \Np\matrix |
||
679 | */ |
||
680 | public function transpose(): matrix { |
||
681 | $ar = self::factory($this->col, $this->row, $this->dtype); |
||
682 | for ($i = 0; $i < $ar->row; ++$i) { |
||
683 | for ($j = 0; $j < $ar->col; ++$j) { |
||
684 | $ar->data[$i * $ar->col + $j] = $this->data[$j * $ar->col + $i]; |
||
685 | } |
||
686 | } |
||
687 | return $ar; |
||
688 | } |
||
689 | |||
690 | /** |
||
691 | * swap specific values in matrix |
||
692 | * @param int $i1 |
||
693 | * @param int $i2 |
||
694 | */ |
||
695 | public function swapValue(int $i1, int $i2) { |
||
696 | $tmp = $this->data[$i1]; |
||
697 | $this->data[$i1] = $this->data[$i2]; |
||
698 | $this->data[$i2] = $tmp; |
||
699 | } |
||
700 | |||
701 | /** |
||
702 | * swap specific rows in matrix |
||
703 | * @param int $r1 |
||
704 | * @param int $r2 |
||
705 | */ |
||
706 | public function swapRows(int $r1, int $r2) { |
||
707 | for ($i = 0; $i < $this->col; ++$i) { |
||
708 | $tmp = $this->data[$r1 * $this->col + $i]; |
||
709 | $this->data[$r1 * $this->col + $i] = $this->data[$r2 * $this->col + $i]; |
||
710 | $this->data[$r2 * $this->col + $i] = $tmp; |
||
711 | } |
||
712 | } |
||
713 | |||
714 | /** |
||
715 | * swap specific cols in matrix |
||
716 | * @param int $c1 |
||
717 | * @param int $c2 |
||
718 | */ |
||
719 | public function swapCols(int $c1, int $c2) { |
||
720 | for ($i = 0; $i < $this->row; ++$i) { |
||
721 | $tmp = $this->data[$i * $this->row + $c1]; |
||
722 | $this->data[$i * $this->row + $c1] = $this->data[$i * $this->row + $c2]; |
||
723 | $this->data[$i * $this->row + $c2] = $tmp; |
||
724 | } |
||
725 | } |
||
726 | |||
727 | /** |
||
728 | * |
||
729 | * @param int|float $scalar |
||
730 | * @return matrix |
||
731 | */ |
||
732 | public function scale(int|float $scalar): matrix { |
||
733 | if ($scalar == 0) { |
||
734 | return self::zeros($this->row, $this->col, $this->dtype); |
||
735 | } |
||
736 | |||
737 | $ar = $this->copy(); |
||
738 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
739 | $ar->data[$i] *= $scalar; |
||
740 | } |
||
741 | |||
742 | return $ar; |
||
743 | } |
||
744 | |||
745 | /** |
||
746 | * scale all the elements of a row |
||
747 | * @param int $row |
||
748 | * @param int|float $c |
||
749 | */ |
||
750 | public function scaleRow(int $row, int|float $c) { |
||
751 | for ($i = 0; $i < $this->col; ++$i) { |
||
752 | $this->data[$row * $this->col + $i] *= $c; |
||
753 | } |
||
754 | } |
||
755 | |||
756 | /** |
||
757 | * scale all the elements of |
||
758 | * @param int $col |
||
759 | * @param int|float $c |
||
760 | */ |
||
761 | public function scaleCol(int $col, int|float $c) { |
||
762 | for ($i = 0; $i < $this->row; ++$i) { |
||
763 | $this->data[$i * $this->col + $col] *= $c; |
||
764 | } |
||
765 | } |
||
766 | |||
767 | /** |
||
768 | * Scale digonally |
||
769 | * @param int|float $c |
||
770 | * @param bool $lDig |
||
771 | */ |
||
772 | public function scaleDigonalCol(int|float $c, bool $lDig = true) { |
||
781 | } |
||
782 | } |
||
783 | } |
||
784 | |||
785 | /** |
||
786 | * |
||
787 | * @param int $r1 |
||
788 | * @param int $r2 |
||
789 | * @param float $c |
||
790 | */ |
||
791 | public function addScaleRow(int $r1, int $r2, float $c) { |
||
792 | for ($i = 0; $i < $this->col; ++$i) { |
||
793 | $this->data[$r2 * $this->col + $i] += $this->data[$r1 * $this->col + $i] * $c; |
||
794 | } |
||
795 | } |
||
796 | |||
797 | /** |
||
798 | * Attach given matrix to the left of this matrix. |
||
799 | * |
||
800 | * @param \Np\matrix $m |
||
801 | * @return \Np\matrix |
||
802 | */ |
||
803 | public function joinLeft(matrix $m): matrix { |
||
804 | if ($this->row != $m->row && !$this->checkDtype($this, $m)) { |
||
805 | self::_err('Error::Invalid size! or DataType!'); |
||
806 | } |
||
807 | $col = $this->col + $m->col; |
||
808 | $ar = self::factory($this->row, $col, $this->dtype); |
||
809 | for ($i = 0; $i < $this->row; ++$i) { |
||
810 | for ($j = 0; $j < $this->col; ++$j) { |
||
811 | $ar->data[$i * $col + $j] = $this->data[$i * $this->col + $j]; |
||
812 | } |
||
813 | for ($j = 0; $j < $m->col; ++$j) { |
||
814 | $ar->data[$i * $col + ($this->col + $j)] = $m->data[$i * $m->col + $j]; |
||
815 | } |
||
816 | } |
||
817 | return $ar; |
||
818 | } |
||
819 | |||
820 | /** |
||
821 | * Join matrix m to the Right of this matrix. |
||
822 | * @param \Np\matrix $m |
||
823 | * @return matrix |
||
824 | */ |
||
825 | public function joinRight(matrix $m): matrix { |
||
826 | if ($this->row != $m->row && !$this->checkDtype($this,$m)) { |
||
827 | self::_err('Error::Invalid size! or DataType!'); |
||
828 | } |
||
829 | $col = $this->col + $m->col; |
||
830 | $ar = self::factory($this->row, $col, $this->dtype); |
||
831 | for ($i = 0; $i < $m->row; ++$i) { |
||
832 | for ($j = 0; $j < $m->col; ++$j) { |
||
833 | $ar->data[$i * $col + $j] = $m->data[$i * $m->col + $j]; |
||
834 | } |
||
835 | for ($j = 0; $j < $this->col; ++$j) { |
||
836 | $ar->data[$i * $col + ($this->col + $j)] = $this->data[$i * $this->col + $j]; |
||
837 | } |
||
838 | } |
||
839 | return $ar; |
||
840 | } |
||
841 | |||
842 | /** |
||
843 | * Join matrix m Above this matrix. |
||
844 | * @param \Np\matrix $m |
||
845 | * @return matrix |
||
846 | */ |
||
847 | public function joinAbove(matrix $m): matrix { |
||
862 | } |
||
863 | |||
864 | /** |
||
865 | * Join matrix m below this matrix. |
||
866 | * @param \Np\matrix $m |
||
867 | * @return matrix |
||
868 | */ |
||
869 | public function joinBelow(matrix $m): matrix { |
||
870 | if ($this->col !== $m->col && !$this->checkDtype($this, $m)) { |
||
871 | self::_err('Error::Invalid size! or DataType!'); |
||
872 | } |
||
873 | $row = $this->row + $m->row; |
||
874 | $ar = self::factory($row, $this->col, $this->dtype); |
||
875 | for ($i = 0; $i < $this->row; ++$i) { |
||
876 | for ($j = 0; $j < $this->col; ++$j) { |
||
877 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j]; |
||
878 | } |
||
879 | for ($j = 0; $j < $m->col; ++$j) { |
||
880 | $ar->data[($i + $m->row) * $m->col + $j] = $m->data[$i * $m->col + $j]; |
||
881 | } |
||
882 | } |
||
883 | return $ar; |
||
884 | } |
||
885 | |||
886 | /** |
||
887 | * Calculate the row echelon form of the matrix. |
||
888 | * Return the reduced matrix. |
||
889 | * |
||
890 | * @return matrix|null |
||
891 | */ |
||
892 | public function ref(): matrix|null { |
||
893 | return ref::factory($this); |
||
894 | } |
||
895 | |||
896 | /** |
||
897 | * Return the lower triangular matrix of the Cholesky decomposition. |
||
898 | * |
||
899 | * @return matrix|null |
||
900 | */ |
||
901 | public function cholesky(): matrix|null { |
||
902 | return cholesky::factory($this); |
||
903 | } |
||
904 | |||
905 | /** |
||
906 | * FIXME-------------- |
||
907 | * RREF |
||
908 | * The reduced row echelon form (RREF) of a matrix. |
||
909 | * @return \Np\matrix |
||
910 | */ |
||
911 | public function rref(): matrix { |
||
912 | return rref::factory($this); |
||
913 | } |
||
914 | |||
915 | /** |
||
916 | * |
||
917 | * @param int $cols |
||
918 | * @return \Np\matrix |
||
919 | */ |
||
920 | public function diminish_left(int $cols): matrix { |
||
921 | $ar = self::factory($this->row, $cols, $this->dtype); |
||
922 | for ($i = 0; $i < $ar->row; ++$i) { |
||
923 | for ($j = 0; $j < $ar->col; ++$j) { |
||
924 | $ar->data[$i * $ar->col + $j] = $this->data[$i * $this->col + $j]; |
||
925 | } |
||
926 | } |
||
927 | return $ar; |
||
928 | } |
||
929 | |||
930 | /** |
||
931 | * |
||
932 | * @param int $cols |
||
933 | * @return \Np\matrix |
||
934 | */ |
||
935 | public function diminish_right(int $cols): matrix { |
||
936 | $ar = self::factory($this->row, $cols, $this->dtype); |
||
937 | for ($i = 0; $i < $ar->row; ++$i) { |
||
938 | for ($j = 0; $j < $ar->col; ++$j) { |
||
939 | $ar->data[$i * $ar->col + $j] = $this->data[$i * $this->col - $cols + $j]; |
||
940 | } |
||
941 | } |
||
942 | return $ar; |
||
943 | } |
||
944 | |||
945 | /** |
||
946 | * Return the index of the maximum element in every row of the matrix. |
||
947 | * @return \Np\vector int |
||
948 | */ |
||
949 | public function argMax(): vector { |
||
950 | $v = vector::factory($this->row, vector::INT); |
||
951 | for ($i = 0; $i < $this->row; ++$i) { |
||
952 | $v->data[$i] = blas::max($this->rowAsVector($i)); |
||
953 | } |
||
954 | return $v; |
||
955 | } |
||
956 | |||
957 | /** |
||
958 | * Return the index of the minimum element in every row of the matrix. |
||
959 | * @return \Np\vector int |
||
960 | */ |
||
961 | public function argMin(): vector { |
||
962 | $v = vector::factory($this->row, vector::INT); |
||
963 | for ($i = 0; $i < $this->row; ++$i) { |
||
964 | $v->data[$i] = blas::min($this->rowAsVector($i)); |
||
965 | } |
||
966 | |||
967 | return $v; |
||
968 | } |
||
969 | |||
970 | /** |
||
971 | * Set given data in matrix |
||
972 | * @param int|float|array $data |
||
973 | * @param bool $dignoal |
||
974 | * @return void |
||
975 | */ |
||
976 | public function setData(int|float|array $data, bool $dignoal = false): void { |
||
977 | if ($dignoal == false) { |
||
978 | if (is_array($data) && is_array($data[0])) { |
||
979 | $f = $this->flattenArray($data); |
||
980 | foreach ($f as $k => $v) { |
||
981 | $this->data[$k] = $v; |
||
982 | } |
||
983 | } elseif (is_numeric($data)) { |
||
984 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
985 | $this->data[$i] = $data; |
||
986 | } |
||
987 | } |
||
988 | } elseif (is_numeric($data) || is_array($data) && !is_array($data[0])) { |
||
989 | for ($i = 0; $i < $this->row; ++$i) { |
||
990 | $this->data[$i * $this->col * $i] = $data; |
||
991 | } |
||
992 | } |
||
993 | } |
||
994 | |||
995 | /** |
||
996 | * get the matrix data type |
||
997 | * @return int |
||
998 | */ |
||
999 | public function getDtype():int { |
||
1000 | return $this->dtype; |
||
1001 | } |
||
1002 | |||
1003 | /** |
||
1004 | * get the shape of matrix |
||
1005 | * @return object |
||
1006 | */ |
||
1007 | public function getShape(): object { |
||
1008 | return (object) ['m' => $this->row, 'n' => $this->col]; |
||
1009 | } |
||
1010 | |||
1011 | /** |
||
1012 | * get the number of elements in the matrix. |
||
1013 | * @return int |
||
1014 | */ |
||
1015 | public function getSize(): int { |
||
1016 | return $this->ndim; |
||
1017 | } |
||
1018 | |||
1019 | /** |
||
1020 | * is matrix squred |
||
1021 | * @return bool |
||
1022 | */ |
||
1023 | public function isSquare(): bool { |
||
1024 | if ($this->row === $this->col) { |
||
1025 | return true; |
||
1026 | } |
||
1027 | return false; |
||
1028 | } |
||
1029 | |||
1030 | /** |
||
1031 | * Return a row as vector from the matrix. |
||
1032 | * @param int $index |
||
1033 | * @return \Np\vector |
||
1034 | */ |
||
1035 | public function rowAsVector(int $index): vector { |
||
1036 | $vr = vector::factory($this->col, $this->dtype); |
||
1037 | for ($j = 0; $j < $this->col; ++$j) { |
||
1038 | $vr->data[$j] = $this->data[$index * $this->col + $j]; |
||
1039 | } |
||
1040 | return $vr; |
||
1041 | } |
||
1042 | |||
1043 | /** |
||
1044 | * Return a col as vector from the matrix. |
||
1045 | * @param int $index |
||
1046 | * @return \Np\vector |
||
1047 | */ |
||
1048 | public function colAsVector(int $index): vector { |
||
1049 | $vr = vector::factory($this->row, $this->dtype); |
||
1050 | for ($i = 0; $i < $this->row; ++$i) { |
||
1051 | $vr->data[$i] = $this->data[$i * $this->row + $index]; |
||
1052 | } |
||
1053 | return $vr; |
||
1054 | } |
||
1055 | |||
1056 | /** |
||
1057 | * Return the diagonal elements of a square matrix as a vector. |
||
1058 | * @return \Np\vector |
||
1059 | */ |
||
1060 | public function diagonalAsVector(): vector { |
||
1061 | if (!$this->isSquare()) { |
||
1062 | self::_err('Can not trace of a none square matrix'); |
||
1063 | } |
||
1064 | $vr = vector::factory($this->row, $this->dtype); |
||
1065 | for ($i = 0; $i < $this->row; ++$i) { |
||
1066 | $vr->data[$i] = $this->getDiagonalVal($i); |
||
1067 | } |
||
1068 | return $vr; |
||
1069 | } |
||
1070 | |||
1071 | /** |
||
1072 | * Flatten i.e unravel the matrix into a vector. |
||
1073 | * |
||
1074 | * @return \Np\vector |
||
1075 | */ |
||
1076 | public function asVector(): vector { |
||
1077 | $vr = vector::factory($this->ndim, $this->dtype); |
||
1078 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1079 | $vr->data[$i] = $this->data[$i]; |
||
1080 | } |
||
1081 | return $vr; |
||
1082 | } |
||
1083 | |||
1084 | /** |
||
1085 | * Return the elements of the matrix in a 2-d array. |
||
1086 | * @return array |
||
1087 | */ |
||
1088 | public function asArray(): array { |
||
1089 | $ar = array_fill(0, $this->row, array_fill(0, $this->col, null)); |
||
1090 | for ($i = 0; $i < $this->row; ++$i) { |
||
1091 | for ($j = 0; $j < $this->col; ++$j) { |
||
1092 | $ar[$i][$j] = $this->data[$i * $this->col + $j]; |
||
1093 | } |
||
1094 | } |
||
1095 | return $ar; |
||
1096 | } |
||
1097 | |||
1098 | /** |
||
1099 | * get a diagonal value from matrix |
||
1100 | * @param int $i |
||
1101 | * @return float |
||
1102 | */ |
||
1103 | public function getDiagonalVal(int $i) { |
||
1104 | if ($this->isSquare()) { |
||
1105 | return $this->data[$i * $this->row + $i]; |
||
1106 | } |
||
1107 | } |
||
1108 | |||
1109 | |||
1110 | |||
1111 | /** |
||
1112 | * Compute the singular value decomposition of a matrix and |
||
1113 | * return an object of the singular values and unitary matrices |
||
1114 | * |
||
1115 | * @return object (u,s,v) |
||
1116 | */ |
||
1117 | public function svd(): svd { |
||
1118 | return svd::factory($this); |
||
1119 | } |
||
1120 | |||
1121 | /** |
||
1122 | * Compute the eigen decomposition of a general matrix. |
||
1123 | * return the eigenvalues and eigenvectors as object |
||
1124 | * |
||
1125 | * @param bool $symmetric |
||
1126 | * @return eigen |
||
1127 | */ |
||
1128 | public function eign(bool $symmetric = false): eigen { |
||
1129 | return eigen::factory($this, $symmetric); |
||
1130 | } |
||
1131 | |||
1132 | /** |
||
1133 | * |
||
1134 | * Compute the LU factorization of matrix. |
||
1135 | * return lower, upper, and permutation matrices as object. |
||
1136 | * |
||
1137 | * @return lu |
||
1138 | */ |
||
1139 | public function lu(): lu { |
||
1140 | return lu::factory($this); |
||
1141 | } |
||
1142 | |||
1143 | /** |
||
1144 | * Return the L1 norm of the matrix. |
||
1145 | * @return float |
||
1146 | */ |
||
1147 | public function normL1(): float { |
||
1148 | return lapack::lange('l', $this); |
||
1149 | } |
||
1150 | |||
1151 | /** |
||
1152 | * Return the L2 norm of the matrix. |
||
1153 | * @return float |
||
1154 | */ |
||
1155 | public function normL2(): float { |
||
1156 | return lapack::lange('f', $this); |
||
1157 | } |
||
1158 | |||
1159 | /** |
||
1160 | * Return the L1 norm of the matrix. |
||
1161 | * @return float |
||
1162 | */ |
||
1163 | public function normINF(): float { |
||
1164 | return lapack::lange('i', $this); |
||
1165 | } |
||
1166 | |||
1167 | /** |
||
1168 | * Return the Frobenius norm of the matrix. |
||
1169 | * @return float |
||
1170 | */ |
||
1171 | public function normFrob(): float { |
||
1172 | return $this->normL2(); |
||
1173 | } |
||
1174 | |||
1175 | /** |
||
1176 | * Compute the means of each row and return them in a vector. |
||
1177 | * |
||
1178 | * @return vector |
||
1179 | */ |
||
1180 | public function mean(): vector { |
||
1181 | return $this->sumRows()->divide($this->col); |
||
1182 | } |
||
1183 | |||
1184 | /** |
||
1185 | * Compute the row variance of the matrix. |
||
1186 | * |
||
1187 | * @param vector|null $mean |
||
1188 | * @return vector |
||
1189 | */ |
||
1190 | public function variance(vector|null $mean = null): vector { |
||
1191 | if (isset($mean)) { |
||
1192 | if (!$mean instanceof vector) { |
||
1193 | self::_invalidArgument('mean must be a vector!'); |
||
1194 | } |
||
1195 | if ($this->row !== $mean->col) { |
||
1196 | self::_err('Err:: given mean vector dimensionality mismatched!'); |
||
1197 | } |
||
1198 | } else { |
||
1199 | $mean = $this->mean(); |
||
1200 | } |
||
1201 | return $this->subtractColumnVector($mean)->square() |
||
1202 | ->sumRows()->divide($this->row); |
||
1203 | } |
||
1204 | |||
1205 | /** |
||
1206 | * Return the median vector of this matrix. |
||
1207 | * @return vector |
||
1208 | */ |
||
1209 | public function median(): vector { |
||
1210 | $mid = intdiv($this->col, 2); |
||
1211 | $odd = $this->col % 2 === 1; |
||
1212 | $vr = vector::factory($this->row, $this->dtype); |
||
1213 | for ($i = 0; $i < $this->row; ++$i) { |
||
1214 | $a = $this->rowAsVector($i)->sort(); |
||
1215 | if ($odd) { |
||
1216 | $median = $a->data[$mid]; |
||
1217 | } else { |
||
1218 | $median = ($a->data[$mid - 1] + $a->data[$mid]) / 2.0; |
||
1219 | } |
||
1220 | $vr->data[$i] = $median; |
||
1221 | } |
||
1222 | unset($a); |
||
1223 | return $vr; |
||
1224 | } |
||
1225 | |||
1226 | /** |
||
1227 | * Compute the covariance matrix. |
||
1228 | * |
||
1229 | * @param vector|null $mean |
||
1230 | * @return matrix |
||
1231 | */ |
||
1232 | public function covariance(vector|null $mean = null): matrix { |
||
1233 | if (isset($mean)) { |
||
1234 | if ($mean->col !== $this->row) { |
||
1235 | self::_err('Err:: given mean vector dimensionality mismatched!'); |
||
1236 | } |
||
1237 | } else { |
||
1238 | $mean = $this->mean(); |
||
1239 | } |
||
1240 | |||
1241 | $b = $this->subtractColumnVector($mean); |
||
1242 | |||
1243 | return $b->dot($b->transpose()) |
||
1244 | ->divideScalar($this->row); |
||
1245 | } |
||
1246 | |||
1247 | /** |
||
1248 | * Square of matrix |
||
1249 | * @return matrix |
||
1250 | */ |
||
1251 | public function square(): matrix { |
||
1252 | return $this->multiplyMatrix($this); |
||
1253 | } |
||
1254 | |||
1255 | /** |
||
1256 | * |
||
1257 | * @param int|float|matrix|vector $d |
||
1258 | * @return matrix |
||
1259 | */ |
||
1260 | public function equal(int|float|matrix|vector $d): matrix { |
||
1261 | if ($d instanceof self) { |
||
1262 | return $this->equalMatrix($d); |
||
1263 | } elseif ($d instanceof vector) { |
||
1264 | return $this->equalVector($d); |
||
1265 | } else { |
||
1266 | return $this->equalScalar($d); |
||
1267 | } |
||
1268 | } |
||
1269 | |||
1270 | protected function equalMatrix(matrix $m): matrix { |
||
1271 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
1272 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1273 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1274 | $ar->data[$i] = $this->data[$i] == $m->data[$i] ? 1 : 0; |
||
1275 | } |
||
1276 | return $ar; |
||
1277 | } |
||
1278 | } |
||
1279 | |||
1280 | protected function equalVector(vector $v): matrix { |
||
1281 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
1282 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1283 | for ($i = 0; $i < $this->row; ++$i) { |
||
1284 | for ($j = 0; $j < $this->col; ++$j) { |
||
1285 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] == $v->data[$j] ? 1 : 0; |
||
1286 | } |
||
1287 | } |
||
1288 | return $ar; |
||
1289 | } |
||
1290 | } |
||
1291 | |||
1292 | protected function equalScalar(int|float $s): matrix { |
||
1293 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1294 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1295 | $ar->data[$i] = $this->data[$i] == $s ? 1 : 0; |
||
1296 | } |
||
1297 | return $ar; |
||
1298 | } |
||
1299 | |||
1300 | /** |
||
1301 | * |
||
1302 | * @param int|float|matrix|vector $d |
||
1303 | * @return matrix |
||
1304 | */ |
||
1305 | public function greater(int|float|matrix|vector $d): matrix { |
||
1312 | } |
||
1313 | } |
||
1314 | |||
1315 | protected function greaterMatrix(matrix $m): matrix { |
||
1316 | if ($this->checkShape($this, $m) && $this->checkDtype($this,$m)) { |
||
1317 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1318 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1319 | $ar->data[$i] = $this->data[$i] > $m->data[$i] ? 1 : 0; |
||
1320 | } |
||
1321 | return $ar; |
||
1322 | } |
||
1323 | } |
||
1324 | |||
1325 | protected function greaterVector(vector $v): matrix { |
||
1326 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this,$v)) { |
||
1327 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1328 | for ($i = 0; $i < $this->row; ++$i) { |
||
1329 | for ($j = 0; $j < $this->col; ++$j) { |
||
1330 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] > $v->data[$j] ? 1 : 0; |
||
1331 | } |
||
1332 | } |
||
1333 | return $ar; |
||
1334 | } |
||
1335 | } |
||
1336 | |||
1337 | protected function greaterScalar(int|float $s): matrix { |
||
1338 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1339 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1340 | $ar->data[$i] = $this->data[$i] > $s ? 1 : 0; |
||
1341 | } |
||
1342 | return $ar; |
||
1343 | } |
||
1344 | |||
1345 | /** |
||
1346 | * |
||
1347 | * @param int|float|matrix $m |
||
1348 | * @return matrix |
||
1349 | */ |
||
1350 | public function less(int|float|matrix $m): matrix { |
||
1364 | } |
||
1365 | } |
||
1366 | |||
1367 | /** |
||
1368 | * Is the matrix symmetric i.e. is it equal to its own transpose? |
||
1369 | * |
||
1370 | * @return bool |
||
1371 | */ |
||
1372 | public function isSymmetric(): bool { |
||
1373 | if (!$this->isSquare()) { |
||
1374 | return false; |
||
1375 | } |
||
1376 | $ar = $this->transpose(); |
||
1377 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
1378 | if ($ar->data[$i] != $this->data[$i]) { |
||
1379 | unset($ar); |
||
1380 | return false; |
||
1381 | } |
||
1382 | } |
||
1383 | unset($ar); |
||
1384 | return true; |
||
1385 | } |
||
1386 | |||
1387 | /** |
||
1388 | * print the matrix in consol |
||
1389 | */ |
||
1390 | public function printMatrix() { |
||
1391 | echo __CLASS__ . PHP_EOL; |
||
1392 | for ($i = 0; $i < $this->row; ++$i) { |
||
1393 | for ($j = 0; $j < $this->col; ++$j) { |
||
1394 | printf('%lf ', $this->data[$i * $this->col + $j]); |
||
1395 | } |
||
1396 | echo PHP_EOL; |
||
1397 | } |
||
1398 | } |
||
1399 | |||
1400 | public function __toString() { |
||
1402 | } |
||
1403 | |||
1404 | private function flattenArray(array $ar) { |
||
1405 | if (is_array($ar) && is_array($ar[0])) { |
||
1406 | $a = []; |
||
1407 | foreach ($ar as $y => $value) { |
||
1408 | foreach ($value as $k => $v) { |
||
1409 | $a[] = $v; |
||
1410 | } |
||
1411 | } |
||
1412 | return $a; |
||
1413 | } |
||
1414 | } |
||
1415 | |||
1416 | /** |
||
1417 | * |
||
1418 | * @param int $row |
||
1419 | * @param int $col |
||
1420 | * @param int $dtype |
||
1421 | * @return $this |
||
1422 | */ |
||
1423 | protected function __construct(public int $row, public int $col, int $dtype = self::Float) { |
||
1429 | } |
||
1430 | } |
||
1431 |