| Total Complexity | 44 |
| Total Lines | 393 |
| Duplicated Lines | 0 % |
| Changes | 1 | ||
| Bugs | 0 | Features | 0 |
Complex classes like blas often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use blas, and based on these observations, apply Extract Interface, too.
| 1 | <?php |
||
| 14 | class blas { |
||
| 15 | |||
| 16 | const CblasLeft = 141, CblasRight = 142; |
||
| 17 | const CblasUpper = 121, CblasLower = 122; |
||
| 18 | const CblasNonUnit = 131, CblasUnit = 132; |
||
| 19 | const CblasRowMajor = 101, CblasColMajor = 102; |
||
| 20 | const CblasNoTrans = 111, CblasTrans = 112, CblasConjTrans = 113; |
||
| 21 | |||
| 22 | public static $ffi_blas = null; |
||
| 23 | |||
| 24 | public static function init() { |
||
| 25 | if (is_null(self::$ffi_blas)) { |
||
| 26 | self::$ffi_blas = \FFI::load(__DIR__ . '/blas.h'); |
||
| 27 | } |
||
| 28 | return self::$ffi_blas; |
||
| 29 | } |
||
| 30 | |||
| 31 | public static function setNumThreads(int $num_threads) { |
||
| 32 | self::init(); |
||
| 33 | self::$ffi_blas->openblas_set_num_threads($num_threads); |
||
| 34 | } |
||
| 35 | |||
| 36 | public static function getNumThreads(): int { |
||
| 37 | self::init(); |
||
| 38 | return self::$ffi_blas->openblas_get_num_threads(); |
||
| 39 | } |
||
| 40 | |||
| 41 | public static function getNumPorcs(): int { |
||
| 42 | self::init(); |
||
| 43 | return self::$ffi_blas->openblas_get_num_procs(); |
||
| 44 | } |
||
| 45 | |||
| 46 | public static function getConfig() { |
||
| 47 | self::init(); |
||
| 48 | return self::$ffi_blas->openblas_get_config(); |
||
| 49 | } |
||
| 50 | |||
| 51 | public static function getCoreName() { |
||
| 54 | } |
||
| 55 | |||
| 56 | public static function getNumParallel(): int { |
||
| 57 | self::init(); |
||
| 58 | return self::$ffi_blas->openblas_get_parallel(); |
||
| 59 | } |
||
| 60 | |||
| 61 | /** |
||
| 62 | * Product of general matrix and general matrix |
||
| 63 | * C := alpha * AB + beta * C |
||
| 64 | * @dtype Float |
||
| 65 | * @param \Np\matrix $m1 |
||
| 66 | * @param \Np\matrix $m2 |
||
| 67 | * @param \Np\matrix $mr |
||
| 68 | * @return \FFI\CData |
||
| 69 | */ |
||
| 70 | public static function gemm(\Np\matrix $m1, \Np\matrix $m2, \Np\matrix $mr, int $trans1 = self::CblasNoTrans, int $trans2 = self::CblasNoTrans) { |
||
| 76 | } |
||
| 77 | } |
||
| 78 | |||
| 79 | /** |
||
| 80 | * Product of symmetric matrix and general matrix |
||
| 81 | * C := alpha * AB + beta * C |
||
| 82 | * or |
||
| 83 | * C := alpha * BA + beta * C |
||
| 84 | * |
||
| 85 | * @param \Np\matrix $m1 |
||
| 86 | * @param \Np\matrix $m2 |
||
| 87 | * @param \Np\matrix $mr |
||
| 88 | */ |
||
| 89 | public static function symm(\Np\matrix $m1, \Np\matrix $m2, \Np\matrix $mr) { |
||
| 90 | self::init(); |
||
| 91 | if ($m1->dtype == \Np\matrix::DOUBLE) { |
||
| 92 | self::$ffi_blas->cblas_dsymm(self::CblasRowMajor, self::CblasLeft, self::CblasUpper, $m1->row, |
||
| 93 | $m2->col, 1.0, $m1->data, $m1->row, $m2->data, $m2->row, 0.0, $mr->data, $mr->row); |
||
| 94 | } else { |
||
| 95 | self::$ffi_blas->cblas_ssymm(self::CblasRowMajor, self::CblasLeft, self::CblasUpper, $m1->row, |
||
| 96 | $m2->col, 1.0, $m1->data, $m1->row, $m2->data, $m2->row, 0.0, $mr->data, $mr->row); |
||
| 97 | } |
||
| 98 | } |
||
| 99 | |||
| 100 | /** |
||
| 101 | * Update rank n of symmetric matrix |
||
| 102 | * C := alpha * A A^T + beta * C |
||
| 103 | * or |
||
| 104 | * C := alpha * A^T A + beta * C |
||
| 105 | * |
||
| 106 | * @param \Np\matrix $m1 |
||
| 107 | * @param \Np\matrix $m2 |
||
| 108 | */ |
||
| 109 | public static function syrk(\Np\matrix $m1, \Np\matrix $m2) { |
||
| 110 | self::init(); |
||
| 111 | if ($m1->dtype == \Np\matrix::DOUBLE) { |
||
| 112 | return self::$ffi_blas->cblas_dsyrk(self::CblasRowMajor, self::CblasUpper, |
||
| 113 | self::CblasNoTrans, $m1->row, $m2->col, 1.0, $m1->data, $m1->row, 0.0, $m2->data, $m2->row); |
||
| 114 | } else { |
||
| 115 | return self::$ffi_blas->cblas_ssyrk(self::CblasRowMajor, self::CblasUpper, |
||
| 116 | self::CblasNoTrans, $m1->row, $m2->col, 1.0, $m1->data, $m1->row, 0.0, $m2->data, $m2->row); |
||
| 117 | } |
||
| 118 | } |
||
| 119 | |||
| 120 | /** |
||
| 121 | * Update rank 2k of symmetric matrix |
||
| 122 | * C := alpha * A B^T + alpha B A^T + beta * C |
||
| 123 | * or |
||
| 124 | * C := alpha * B^T A + alpha A^T B + beta * C |
||
| 125 | * |
||
| 126 | * @param \Np\matrix $m1 |
||
| 127 | * @param \Np\matrix $m2 |
||
| 128 | * @param \Np\matrix $mr |
||
| 129 | */ |
||
| 130 | public static function syr2k(\Np\matrix $m1, \Np\matrix $m2, \Np\matrix $mr) { |
||
| 131 | self::init(); |
||
| 132 | if ($m1->dtype == \Np\matrix::DOUBLE) { |
||
| 133 | self::$ffi_blas->cblas_dsyr2k(self::CblasRowMajor, self::CblasLower, self::CblasNoTrans, |
||
| 134 | $m1->col, $m2->row, 1.0, $m1->data, $m1->row, $m2->data, $m2->row, 0.0, $mr->data, $mr->row); |
||
| 135 | } else { |
||
| 136 | self::$ffi_blas->cblas_ssyr2k(self::CblasRowMajor, self::CblasLower, self::CblasNoTrans, $m1->col, $m2->row, 1.0, $m1->data, $m1->row, |
||
| 137 | $m2->data, $m2->row, 0.0, $mr->data, $mr->row); |
||
| 138 | } |
||
| 139 | } |
||
| 140 | |||
| 141 | /** |
||
| 142 | * @static |
||
| 143 | * @dtype Double |
||
| 144 | * @param \Np\matrix $m |
||
| 145 | * @param \Np\vector $v |
||
| 146 | * @param \Np\vector $mvr |
||
| 147 | * @return \FFI\CData |
||
| 148 | */ |
||
| 149 | public static function gemv(\Np\matrix $m, \Np\vector $v, \Np\vector $mvr) { |
||
| 150 | self::init(); |
||
| 151 | if ($m->dtype == \Np\matrix::DOUBLE) { |
||
| 152 | return self::$ffi_blas->cblas_dgemv(self::CblasRowMajor, self::CblasNoTrans, $m->row, $m->col, |
||
| 153 | 1.0, $m->data, $m->row, $v->data, 1, 1.0, $mvr->data, 1); |
||
| 154 | } else { |
||
| 155 | return self::$ffi_blas->cblas_sgemv(self::CblasRowMajor, self::CblasNoTrans, $m->col, $m->row, |
||
| 156 | 1.0, $m->data, $m->row, $v->data, 1, 0.0, $mvr->data, 1); |
||
| 157 | } |
||
| 158 | } |
||
| 159 | |||
| 160 | /** |
||
| 161 | * Compute the product of a general matrix and a vector stored in band format. |
||
| 162 | * y := alpha * Ax + beta * y |
||
| 163 | * @param int $KL Number of elements in the lower left part |
||
| 164 | * @param int $KU Number of elements in the upper right part |
||
| 165 | * @param double $alpha Coefficient of scalar multiple of vector |
||
| 166 | * @param double $beta Coefficient of scalar multiple of mvr |
||
| 167 | * @param \Np\matrix $matrix |
||
| 168 | * @param \Np\vector $vector |
||
| 169 | * @param \Np\vector $mvr |
||
| 170 | */ |
||
| 171 | public static function gbmv(int $KL, int $KU, float $alpha, float $beta, \Np\matrix $matrix, \Np\vector $vector, \Np\vector $mvr) { |
||
| 172 | self::init(); |
||
| 173 | if ($matrix->dtype == \Np\matrix::DOUBLE) { |
||
| 174 | return self::$ffi_blas->cblas_dgbmv(self::CblasRowMajor, |
||
| 175 | self::CblasNoTrans, $matrix->row, $matrix->col, |
||
| 176 | $KL, $KU, $alpha, |
||
| 177 | $matrix->data, $matrix->row, $vector->data, |
||
| 178 | 1, $beta, $mvr->data, 1); |
||
| 179 | } else { |
||
| 180 | return self::$ffi_blas->cblas_sgbmv(self::CblasRowMajor, |
||
| 181 | self::CblasNoTrans, $matrix->row, $matrix->col, |
||
| 182 | $KL, $KU, $alpha, |
||
| 183 | $matrix->data, $matrix->row, $vector->data, |
||
| 184 | 1, $beta, $mvr->data, 1); |
||
| 185 | } |
||
| 186 | } |
||
| 187 | |||
| 188 | /** |
||
| 189 | * Compute the product of a column vector and a row vector. (Real number) |
||
| 190 | * A := alpha * x y^t + A |
||
| 191 | * @param \Np\vector $v1 |
||
| 192 | * @param \Np\vector $v2 |
||
| 193 | * @param \Np\matrix $m |
||
| 194 | * @return void |
||
| 195 | */ |
||
| 196 | public static function ger(\Np\vector $v1, \Np\vector $v2, \Np\matrix $m) { |
||
| 197 | self::init(); |
||
| 198 | if ($m->dtype == \Np\matrix::DOUBLE) { |
||
| 199 | return self::$ffi_blas->cblas_dger(self::CblasRowMajor, $v1->col, $v2->col, |
||
| 200 | 1.0, $v1->data, 1, $v2->data, 1, $m->data, $m->row); |
||
| 201 | } else { |
||
| 202 | return self::$ffi_blas->cblas_sger(self::CblasRowMajor, $v1->col, $v2->col, |
||
| 203 | 1.0, $v1->data, 1, $v2->data, 1, $m->data, $m->row); |
||
| 204 | } |
||
| 205 | } |
||
| 206 | |||
| 207 | /** |
||
| 208 | * @static |
||
| 209 | * @dtype Double |
||
| 210 | * @param \Np\vector $v1 |
||
| 211 | * @param \Np\vector $v2 |
||
| 212 | */ |
||
| 213 | public static function dot(\Np\vector $v1, \Np\vector $v2) { |
||
| 214 | self::init(); |
||
| 215 | if ($v1->dtype == \Np\vector::DOUBLE) { |
||
| 216 | return self::$ffi_blas->cblas_ddot($v1->col, $v1->data, 1, $v2->data, 1); |
||
| 217 | } else { |
||
| 218 | return self::$ffi_blas->cblas_sdot($v1->col, $v1->data, 1, $v2->data, 1); |
||
| 219 | } |
||
| 220 | } |
||
| 221 | |||
| 222 | /** |
||
| 223 | * Calculates the index of the element with the largest absolute value in the vector. |
||
| 224 | * Note that this subscript starts from 1. If 0 is returned, n is invalid. |
||
| 225 | * ret := arg max |X(i)| |
||
| 226 | * |
||
| 227 | * @param \Np\vector $v |
||
| 228 | * @return int index of the element(Note that start from 0 according to cblas) |
||
| 229 | */ |
||
| 230 | public static function max(\Np\vector $v) { |
||
| 231 | self::init(); |
||
| 232 | if ($v->dtype == \Np\vector::FLOAT) { |
||
| 233 | return self::$ffi_blas->cblas_isamax($v->col, $v->data, 1); |
||
| 234 | } else { |
||
| 235 | return self::$ffi_blas->cblas_idamax($v->col, $v->data, 1); |
||
| 236 | } |
||
| 237 | } |
||
| 238 | |||
| 239 | /** |
||
| 240 | * Calculates the index of the element with the smallest absolute value in the vector. |
||
| 241 | * Note that this subscript starts from 1. If 0 is returned, n is invalid. |
||
| 242 | * ret := arg min |X(i)| |
||
| 243 | * |
||
| 244 | * @param \Np\vector $v |
||
| 245 | * @return int |
||
| 246 | */ |
||
| 247 | public static function min(\Np\vector $v) { |
||
| 253 | } |
||
| 254 | } |
||
| 255 | |||
| 256 | /** |
||
| 257 | * Exchange the contents of the vector. |
||
| 258 | * X := Y |
||
| 259 | * Y := X |
||
| 260 | * @param \Np\vector $v1 |
||
| 261 | * @param \Np\vector $v2 |
||
| 262 | * @param int $inv1 |
||
| 263 | * @param int $inv2 |
||
| 264 | */ |
||
| 265 | public static function swap(\Np\vector $v1, \Np\vector $v2, int $inv1 = 1, int $inv2 = 1) { |
||
| 266 | self::init(); |
||
| 267 | if ($v1->dtype == \Np\vector::DOUBLE) { |
||
| 268 | self::$ffi_blas->cblas_dswap($v1->col, $v1->data, $inv1, $v2->data, $inv2); |
||
| 269 | } else { |
||
| 270 | self::$ffi_blas->cblas_sswap($v1->col, $v1->data, $inv1, $v2->data, $inv2); |
||
| 271 | } |
||
| 272 | } |
||
| 273 | |||
| 274 | /** |
||
| 275 | * Copy the vector from X to Y. |
||
| 276 | * Y := X |
||
| 277 | * @param \Np\vector $vect_X Vector X buffer |
||
| 278 | * @param \Np\vector $vect_Y Vector Y buffer |
||
| 279 | * @param int $invX |
||
| 280 | * @param int $invY |
||
| 281 | * @return void |
||
| 282 | */ |
||
| 283 | public static function copy(\Np\vector $vect_X, \Np\vector $vect_Y, int $invX = 1, int $invY = 1) { |
||
| 291 | } |
||
| 292 | } |
||
| 293 | |||
| 294 | /** |
||
| 295 | * Compute the Euclidean norm of a vector. |
||
| 296 | * ret := ||X|| |
||
| 297 | * @param \Np\vector $v |
||
| 298 | * @return float |
||
| 299 | */ |
||
| 300 | public static function nrm2(\Np\vector $v): float { |
||
| 301 | self::init(); |
||
| 302 | if ($v->dtype == \Np\vector::DOUBLE) { |
||
| 303 | return self::$ffi_blas->cblas_dnrme($v->col, $v->data, 1); |
||
| 304 | } else { |
||
| 305 | return self::$ffi_blas->cblas_snrme($v->col, $v->data, 1); |
||
| 306 | } |
||
| 307 | } |
||
| 308 | |||
| 309 | /** |
||
| 310 | * Add vectors |
||
| 311 | * Y := alpha * X + Y |
||
| 312 | * @param float $alpha Coefficient of scalar multiple of X vector |
||
| 313 | * @param \Np\vector $vect_X Vector X buffer |
||
| 314 | * @param \Np\vector $vect_Y Vector Y buffer |
||
| 315 | * @return void |
||
| 316 | */ |
||
| 317 | public static function axpy(float $alpha, \Np\vector $vect_X, \Np\vector $vect_Y) { |
||
| 318 | self::init(); |
||
| 319 | if ($vect_X->dtype == \Np\vector::DOUBLE) { |
||
| 320 | return self::$ffi_blas->cblas_daxpy($vect_X->col, $alpha, $vect_X->data, |
||
| 321 | 1, $vect_Y->data, 1); |
||
| 322 | } else { |
||
| 323 | return self::$ffi_blas->cblas_saxpy($vect_X->col, $alpha, $vect_X->data, |
||
| 324 | 1, $vect_Y->data, 1); |
||
| 325 | } |
||
| 326 | } |
||
| 327 | |||
| 328 | /** |
||
| 329 | * Calculates the sum of the absolute values of each component of the vector. |
||
| 330 | * ret := |x_1| + ... + |x_n| |
||
| 331 | * @param \Np\vector $v Vector X buffer |
||
| 332 | * @return float |
||
| 333 | */ |
||
| 334 | public static function asum(\Np\vector $v): float { |
||
| 335 | self::init(); |
||
| 336 | if ($v->dtype == \Np\vector::DOUBLE) { |
||
| 337 | return self::$ffi_blas->cblas_dasum($v->col, $v->data, 1); |
||
| 338 | } else { |
||
| 339 | return self::$ffi_blas->cblas_sasum($v->col, $v->data, 1); |
||
| 340 | } |
||
| 341 | } |
||
| 342 | |||
| 343 | /** |
||
| 344 | * Rotate about a given point. |
||
| 345 | * X(i) := c * X(i) + s * Y(i) |
||
| 346 | * Y(i) :=-s * X(i) + c * Y(i) |
||
| 347 | * @param \Np\vector $v1 Vector X buffer |
||
| 348 | * @param \Np\vector $v2 Vector Y buffer |
||
| 349 | * @param float $c value of cos A(Value obtained with rotg function.) |
||
| 350 | * @param float $s value of sin A(Value obtained with rotg function.) |
||
| 351 | * |
||
| 352 | */ |
||
| 353 | public static function rotate(\Np\vector $v1, \Np\vector $v2, float $c, float $s) { |
||
| 354 | self::init(); |
||
| 355 | if ($v1->dtype == \Np\vector::DOUBLE) { |
||
| 356 | return self::$ffi_blas->cblas_drot($v1->col, $v1->data, 1, |
||
| 357 | $v2->data, 1, $c, $s); |
||
| 358 | } else { |
||
| 359 | return self::$ffi_blas->cblas_srot($v1->col, $v1->data, 1, |
||
| 360 | $v2->data, 1, $c, $s); |
||
| 361 | } |
||
| 362 | } |
||
| 363 | |||
| 364 | /** |
||
| 365 | * Give the point P (a, b). |
||
| 366 | * Rotate this point to givens and calculate the parameters a, b, c, |
||
| 367 | * and s to make the y coordinate zero. |
||
| 368 | * Conditions description: |
||
| 369 | * c * a + s * b = r |
||
| 370 | * -s * a + c * b = 0 |
||
| 371 | * r = ||(a,b)|| |
||
| 372 | * c^2 + s^2 = 1 |
||
| 373 | * z=s if |a| > |b| |
||
| 374 | * z=1/c if |a| <= |b| and c != 0 and r != 0 |
||
| 375 | * Find r, z, c, s that satisfies the above description. |
||
| 376 | * However, when r = 0, z = 0, c = 1, and s = 0 are returned. |
||
| 377 | * Also, if c = 0, | a | <= | b | and c! = 0 and r! = 0, z = 1 is returned. |
||
| 378 | * @param float $a X-coordinate of P: The calculated r value is stored and returned |
||
| 379 | * @param float $b Y-coordinate of P: The calculated z value is stored and returned |
||
| 380 | * @param float $c Stores the calculated value of c |
||
| 381 | * @param float $s Stores the calculated value of s |
||
| 382 | * @return void |
||
| 383 | */ |
||
| 384 | public static function drotg(float $a, float $b, float $c, float $s) { |
||
| 387 | } |
||
| 388 | |||
| 389 | public static function srotg(float $a, float $b, float $c, float $s) { |
||
| 390 | self::init(); |
||
| 391 | return self::$ffi_blas->cblas_srotg($a, $b, $c, $s); |
||
| 392 | } |
||
| 393 | |||
| 394 | /** |
||
| 395 | * Multiply vector by scalar. |
||
| 396 | * |
||
| 397 | * @param float $alpha Coefficient of scalar multiple of V vector |
||
| 398 | * @param \Np\vector|\Np\matrix $v |
||
| 399 | * @return type |
||
|
1 ignored issue
–
show
|
|||
| 400 | */ |
||
| 401 | public static function scale(float $alpha, \Np\vector|\Np\matrix $v) { |
||
| 407 | } |
||
| 408 | } |
||
| 409 | |||
| 410 | } |
||
| 411 |
The issue could also be caused by a filter entry in the build configuration. If the path has been excluded in your configuration, e.g.
excluded_paths: ["lib/*"], you can move it to the dependency path list as follows:For further information see https://scrutinizer-ci.com/docs/tools/php/php-scrutinizer/#list-dependency-paths