Total Complexity | 134 |
Total Lines | 694 |
Duplicated Lines | 0 % |
Changes | 2 | ||
Bugs | 0 | Features | 0 |
Complex classes like vector often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use vector, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
29 | class vector extends nd { |
||
30 | |||
31 | /** |
||
32 | * Factory method to build a new vector. |
||
33 | * |
||
34 | * @param int $col |
||
35 | * @param int $dtype |
||
36 | * @return vector |
||
37 | */ |
||
38 | public static function factory(int $col, int $dtype = self::FLOAT): vector { |
||
39 | return new self($col, $dtype); |
||
40 | } |
||
41 | |||
42 | /** |
||
43 | * Build a new vector from a php array. |
||
44 | * |
||
45 | * @param array $data |
||
46 | * @param int $dtype |
||
47 | * @return vector |
||
48 | */ |
||
49 | public static function ar(array $data, int $dtype = self::FLOAT): vector { |
||
50 | if (is_array($data) && !is_array($data[0])) { |
||
51 | $ar = self::factory(count($data), $dtype); |
||
52 | $ar->setData($data); |
||
53 | return $ar; |
||
54 | } else { |
||
55 | self::_err('data must be of same dimensions'); |
||
1 ignored issue
–
show
|
|||
56 | } |
||
57 | } |
||
58 | |||
59 | /** |
||
60 | * Return vector with random values |
||
61 | * @param int $col |
||
62 | * @param int $dtype |
||
63 | * @return vector |
||
64 | */ |
||
65 | public static function randn(int $col, int $dtype = self::FLOAT): vector { |
||
66 | $ar = self::factory($col, $dtype); |
||
67 | $max = getrandmax(); |
||
68 | for ($i = 0; $i < $ar->col; ++$i) { |
||
69 | $ar->data[$i] = rand() / $max; |
||
70 | } |
||
71 | return $ar; |
||
72 | } |
||
73 | |||
74 | /** |
||
75 | * Return vector with uniform values |
||
76 | * @param int $col |
||
77 | * @param int $dtype |
||
78 | * @return vector |
||
79 | */ |
||
80 | public static function uniform(int $col, int $dtype = self::FLOAT): vector { |
||
81 | $ar = self::factory($col, $dtype); |
||
82 | $max = getrandmax(); |
||
83 | for ($i = 0; $i < $col; ++$i) { |
||
84 | $ar->data[$i] = rand(-$max, $max) / $max; |
||
85 | } |
||
86 | return $ar; |
||
87 | } |
||
88 | |||
89 | /** |
||
90 | * Build a vector of zeros with n elements. |
||
91 | * |
||
92 | * @param int $col |
||
93 | * @param int $dtype |
||
94 | * @return vector |
||
95 | */ |
||
96 | public static function zeros(int $col, int $dtype = self::FLOAT): vector { |
||
97 | $ar = self::factory($col, $dtype); |
||
98 | for ($i = 0; $i < $col; ++$i) { |
||
99 | $ar->data[$i] = 0; |
||
100 | } |
||
101 | return $ar; |
||
102 | } |
||
103 | |||
104 | /** |
||
105 | * create one like vector |
||
106 | * |
||
107 | * @param int $col |
||
108 | * @return vector |
||
109 | */ |
||
110 | public static function ones(int $col, int $dtype = self::FLOAT): vector { |
||
111 | $ar = self::factory($col, $dtype); |
||
112 | for ($i = 0; $i < $col; ++$i) { |
||
113 | $ar->data[$i] = 1; |
||
114 | } |
||
115 | return $ar; |
||
116 | } |
||
117 | |||
118 | /** |
||
119 | * create a null like vector |
||
120 | * @param int $col |
||
121 | * @return vector |
||
122 | */ |
||
123 | public static function null(int $col, int $dtype = self::FLOAT): vector { |
||
124 | $ar = self::factory($col, $dtype); |
||
125 | for ($i = 0; $i < $col; ++$i) { |
||
126 | $ar->data[$i] = null; |
||
127 | } |
||
128 | return $ar; |
||
129 | } |
||
130 | |||
131 | /** |
||
132 | * create a vector with given scalar value |
||
133 | * @param int $col |
||
134 | * @param int|float|double $val |
||
135 | * @param int $dtype |
||
136 | * @return vector |
||
137 | */ |
||
138 | public static function full(int $col, int|float $val, int $dtype = self::FLOAT): vector { |
||
139 | $ar = self::factory($col, $dtype); |
||
140 | for ($i = 0; $i < $col; ++$i) { |
||
141 | $ar->data[$i] = $val; |
||
142 | } |
||
143 | return $ar; |
||
144 | } |
||
145 | |||
146 | /** |
||
147 | * Return evenly spaced values within a given interval. |
||
148 | * |
||
149 | * @param int|float $start |
||
150 | * @param int|float $end |
||
151 | * @param int|float $interval |
||
152 | * @param int $dtype |
||
153 | * @return vector |
||
154 | */ |
||
155 | public static function range(int|float $start, int|float $end, int|float $interval = 1, int $dtype = self::FLOAT): vector { |
||
156 | return self::ar(range($start, $end, $interval)); |
||
157 | } |
||
158 | |||
159 | /** |
||
160 | * Return a Gaussian random vector with mean 0 |
||
161 | * and unit variance. |
||
162 | * |
||
163 | * @param int $n |
||
164 | * @param int $dtype |
||
165 | * @return self |
||
166 | */ |
||
167 | public static function gaussian(int $n, int $dtype = self::FLOAT): vector { |
||
168 | $max = getrandmax(); |
||
169 | $a = new self($n, $dtype); |
||
170 | while (count($a) < $n) { |
||
171 | $r = sqrt(-2.0 * log(rand() / $max)); |
||
172 | $phi = rand() / $max * (2. * M_PI); |
||
173 | $a[] = $r * sin($phi); |
||
174 | $a[] = $r * cos($phi); |
||
175 | } |
||
176 | if (count($a) > $n) { |
||
177 | $a = array_slice($a, 0, $n); |
||
178 | } |
||
179 | return self::ar($a, $dtype); |
||
1 ignored issue
–
show
|
|||
180 | } |
||
181 | |||
182 | /** |
||
183 | * Generate a vector with n elements from a Poisson distribution. |
||
184 | * |
||
185 | * @param int $n |
||
186 | * @param float $lambda |
||
187 | * @param int $dtype |
||
188 | * @return vector |
||
189 | */ |
||
190 | public static function poisson(int $n, float $lambda = 1.0, int $dtype = self::FLOAT): vector { |
||
191 | $max = getrandmax(); |
||
192 | $l = exp(-$lambda); |
||
193 | $a = new self($n, $dtype); |
||
194 | for ($i = 0; $i < $n; ++$i) { |
||
195 | $k = 0; |
||
196 | $p = 1.0; |
||
197 | while ($p > $l) { |
||
198 | ++$k; |
||
199 | $p *= rand() / $max; |
||
200 | } |
||
201 | $a->data[$i] = $k - 1; |
||
202 | } |
||
203 | return $a; |
||
204 | } |
||
205 | |||
206 | /** |
||
207 | * Return a vector of n evenly spaced numbers between minimum and maximum. |
||
208 | * |
||
209 | * @param float $min |
||
210 | * @param float $max |
||
211 | * @param int $n |
||
212 | * @param int $dtype |
||
213 | * @throws invalidArgumentException |
||
214 | * @return vector |
||
215 | */ |
||
216 | public static function linspace(float $min, float $max, int $n, int $dtype = self::FLOAT): vector { |
||
217 | if ($min > $max) { |
||
218 | throw new invalidArgumentException('Minimum must be less than maximum.'); |
||
219 | } |
||
220 | if ($n < 2) { |
||
221 | throw new invalidArgumentException('Number of elements must be greater than 1.'); |
||
222 | } |
||
223 | $k = $n - 1; |
||
224 | $interval = abs($max - $min) / $k; |
||
225 | $a = [$min]; |
||
226 | while (count($a) < $k) { |
||
227 | $a[] = end($a) + $interval; |
||
228 | } |
||
229 | $a[] = $max; |
||
230 | return self::ar($a); |
||
231 | } |
||
232 | |||
233 | /** |
||
234 | * make a copy of vector |
||
235 | * @return vector |
||
236 | */ |
||
237 | public function copyVector(): vector { |
||
238 | return clone $this; |
||
239 | } |
||
240 | |||
241 | /** |
||
242 | * Return the element-wise maximum of given vector with current vector |
||
243 | * |
||
244 | * @param \Np\vector $vector |
||
245 | * @return vector |
||
246 | */ |
||
247 | public function maximum(\Np\vector $vector): vector { |
||
248 | if ($this->checkDimensions($vector) && $this->checkDtype($vector)) { |
||
249 | $v = new self($this->ndim, $this->dtype); |
||
250 | for($i = 0; $i<$v->ndim; ++$i) { |
||
251 | $v->data[$i] = max($this->data[$i],$vector->data[$i]); |
||
252 | } |
||
253 | return $v; |
||
254 | } |
||
1 ignored issue
–
show
|
|||
255 | } |
||
256 | |||
257 | /** |
||
258 | * Return the element-wise minium of given vector with current vector |
||
259 | * |
||
260 | * @param \Np\vector $vector |
||
261 | * @return vector |
||
262 | */ |
||
263 | public function minium(\Np\vector $vector): vector { |
||
264 | if ($this->checkDimensions($vector) && $this->checkDtype($vector)) { |
||
265 | $v = new self($this->ndim, $this->dtype); |
||
266 | for($i = 0; $i<$v->ndim; ++$i) { |
||
267 | $v->data[$i] = min($this->data[$i],$vector->data[$i]); |
||
268 | } |
||
269 | return $v; |
||
270 | } |
||
1 ignored issue
–
show
|
|||
271 | } |
||
272 | |||
273 | /** |
||
274 | * Return the index of the minimum element in the vector. |
||
275 | * |
||
276 | * @return int |
||
277 | */ |
||
278 | public function argMin():int { |
||
279 | return blas::min($this); |
||
280 | } |
||
281 | |||
282 | /** |
||
283 | * Return the index of the maximum element in the vector. |
||
284 | * |
||
285 | * @return int |
||
286 | */ |
||
287 | public function argMx():int { |
||
288 | return blas::max($this); |
||
289 | } |
||
290 | |||
291 | /** |
||
292 | * vector-vector dot product |
||
293 | * @param \Np\vector $vector |
||
294 | * @param int $incX |
||
295 | * @param int $incY |
||
296 | * @return vector |
||
297 | */ |
||
298 | public function dotVector(\Np\vector $v) { |
||
299 | if ($this->checkDtype($v)) { |
||
300 | return blas::dot($this, $v); |
||
301 | } |
||
302 | } |
||
303 | |||
304 | /** |
||
305 | * |
||
306 | * @return float |
||
307 | */ |
||
308 | public function sum(): float { |
||
309 | return blas::asum($this); |
||
310 | } |
||
311 | |||
312 | /** |
||
313 | * Return the product of the vector. |
||
314 | * @return int|float |
||
315 | */ |
||
316 | public function product(): float { |
||
317 | $r = 1.0; |
||
318 | for ($i = 0; $i < $this->col; ++$i) { |
||
319 | $r *= $this->data[$i]; |
||
320 | } |
||
321 | return $r; |
||
322 | } |
||
323 | |||
324 | /** |
||
325 | * Compute the vector-matrix dot product of this vector and matrix . |
||
326 | * @param \Np\matrix $m |
||
327 | * @return vector |
||
328 | */ |
||
329 | public function dotMatrix(\Np\matrix $m): vector { |
||
330 | if ($this->dtype != $m->dtype) { |
||
331 | self::_err('Mismatch Dtype of given matrix'); |
||
332 | } |
||
333 | $mvr = self::factory($this->col, $this->dtype); |
||
334 | core\blas::gemv($m, $this, $mvr); |
||
335 | return $mvr; |
||
336 | } |
||
337 | |||
338 | /** |
||
339 | * |
||
340 | * @param int|float|matrix|vector $d |
||
341 | * @return matrix|vector |
||
342 | */ |
||
343 | public function divide(int|float|matrix|vector $d): matrix|vector { |
||
344 | if ($d instanceof matrix) { |
||
345 | return $this->divideMatrix($d); |
||
346 | } elseif ($d instanceof self) { |
||
347 | return $this->divideVector($d); |
||
348 | } else { |
||
349 | return $this->divideScalar($d); |
||
350 | } |
||
351 | } |
||
352 | |||
353 | /** |
||
354 | * |
||
355 | * @param \Np\matrix $m |
||
356 | * @return matrix |
||
357 | */ |
||
358 | protected function divideMatrix(\Np\matrix $m): matrix { |
||
359 | if ($this->col == $m->col && $this->dtype == $m->dtype) { |
||
360 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
361 | for ($i = 0; $i < $m->row; ++$i) { |
||
362 | for ($j = 0; $j < $m->col; ++$j) { |
||
363 | $vr->data[$i * $m->col + $j] = $this->data[$j] / $m->data[$i * $m->col + $j]; |
||
364 | } |
||
365 | } |
||
366 | return $vr; |
||
367 | } |
||
1 ignored issue
–
show
|
|||
368 | } |
||
369 | |||
370 | /** |
||
371 | * |
||
372 | * @param vector $v |
||
373 | * @return vector |
||
374 | */ |
||
375 | protected function divideVector(vector $v): vector { |
||
376 | if ($this->checkDimensions($v) && $this->checkDtype($v)) { |
||
377 | $vr = self::factory($this->col, $this->dtype); |
||
378 | for ($i = 0; $i < $this->col; ++$i) { |
||
379 | $vr->data[$i] = $this->data[$i] / $v->data[$i]; |
||
380 | } |
||
381 | return $vr; |
||
382 | } |
||
1 ignored issue
–
show
|
|||
383 | } |
||
384 | |||
385 | /** |
||
386 | * |
||
387 | * @param int|float $s |
||
388 | * @return vector |
||
389 | */ |
||
390 | protected function divideScalar(int|float $s): vector { |
||
391 | $vr = self::factory($this->col, $this->dtype); |
||
392 | for ($i = 0; $i < $this->col; ++$i) { |
||
393 | $vr->data[$i] = $this->data[$i] / $s; |
||
394 | } |
||
395 | return $vr; |
||
396 | } |
||
397 | |||
398 | /** |
||
399 | * |
||
400 | * @param int|float|matrix|vector $d |
||
401 | * @return matrix|vector |
||
402 | */ |
||
403 | public function multiply(int|float|matrix|vector $d): matrix|vector { |
||
404 | if ($d instanceof matrix) { |
||
405 | return $this->multiplyMatrix($d); |
||
406 | } elseif ($d instanceof self) { |
||
407 | return $this->multiplyVector($d); |
||
408 | } else { |
||
409 | return $this->multiplyScalar($d); |
||
410 | } |
||
411 | } |
||
412 | |||
413 | /** |
||
414 | * |
||
415 | * @param \Np\matrix $m |
||
416 | * @return matrix |
||
417 | */ |
||
418 | protected function multiplyMatrix(\Np\matrix $m): matrix { |
||
419 | if ($this->col == $m->col && $this->dtype == $m->dtype) { |
||
420 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
421 | for ($i = 0; $i < $m->row; ++$i) { |
||
422 | for ($j = 0; $j < $m->col; ++$j) { |
||
423 | $vr->data[$i * $m->col + $j] = $this->data[$j] * $m->data[$i * $m->col + $j]; |
||
424 | } |
||
425 | } |
||
426 | return $vr; |
||
427 | } |
||
1 ignored issue
–
show
|
|||
428 | } |
||
429 | |||
430 | /** |
||
431 | * |
||
432 | * @param \Np\vector $vector |
||
433 | * @return vector |
||
434 | */ |
||
435 | protected function multiplyVector(\Np\vector $vector): vector { |
||
436 | if ($this->checkDimensions($vector) && $this->checkDtype($vector)) { |
||
437 | $vr = self::factory($this->col, $this->dtype); |
||
438 | for ($i = 0; $i < $this->col; ++$i) { |
||
439 | $vr->data[$i] = $this->data[$i] * $vector->data[$i]; |
||
440 | } |
||
441 | return $vr; |
||
442 | } |
||
1 ignored issue
–
show
|
|||
443 | } |
||
444 | |||
445 | /** |
||
446 | * |
||
447 | * @param int|float $s |
||
448 | * @return vector |
||
449 | */ |
||
450 | protected function multiplyScalar(int|float $s): vector { |
||
451 | $vr = $this->copyVector(); |
||
452 | blas::scale($s, $vr); |
||
453 | return $vr; |
||
454 | } |
||
455 | |||
456 | /** |
||
457 | * |
||
458 | * @param int|float|matrix|vector $d |
||
459 | * @return matrix|vector |
||
460 | */ |
||
461 | public function add(int|float|matrix|vector $d): matrix|vector { |
||
462 | if ($d instanceof matrix) { |
||
463 | return $this->addMatrix($d); |
||
464 | } elseif ($d instanceof self) { |
||
465 | return $this->addVector($d); |
||
466 | } else { |
||
467 | return $this->addScalar($d); |
||
468 | } |
||
469 | } |
||
470 | |||
471 | /** |
||
472 | * |
||
473 | * @param \Np\matrix $m |
||
474 | * @return matrix |
||
475 | */ |
||
476 | protected function addMatrix(\Np\matrix $m): matrix { |
||
477 | if ($this->col == $m->col && $this->dtype == $m->dtype) { |
||
478 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
479 | for ($i = 0; $i < $m->row; ++$i) { |
||
480 | for ($j = 0; $j < $m->col; ++$j) { |
||
481 | $vr->data[$i * $m->col + $j] = $this->data[$j] + $m->data[$i * $m->col + $j]; |
||
482 | } |
||
483 | } |
||
484 | return $vr; |
||
485 | } |
||
486 | self::_invalidArgument(''); |
||
1 ignored issue
–
show
|
|||
487 | } |
||
488 | |||
489 | /** |
||
490 | * |
||
491 | * @param \Np\vector $vector |
||
492 | * @return vector |
||
493 | */ |
||
494 | protected function addVector(\Np\vector $vector): vector { |
||
495 | if ($this->checkDimensions($vector) && $this->checkDtype($vector)) { |
||
496 | $vr = self::factory($this->col, $this->dtype); |
||
497 | for ($i = 0; $i < $this->col; ++$i) { |
||
498 | $vr->data[$i] = $this->data[$i] + $vector->data[$i]; |
||
499 | } |
||
500 | return $vr; |
||
501 | } |
||
1 ignored issue
–
show
|
|||
502 | } |
||
503 | |||
504 | /** |
||
505 | * |
||
506 | * @param int|float $s |
||
507 | * @return vector |
||
508 | */ |
||
509 | protected function addScalar(int|float $s): vector { |
||
510 | $vr = $this->copyVector(); |
||
511 | for ($i = 0; $i < $this->col; ++$i) { |
||
512 | $vr->data[$i] += $s; |
||
513 | } |
||
514 | return $vr; |
||
515 | } |
||
516 | |||
517 | /** |
||
518 | * |
||
519 | * @param \Np\vector $vector |
||
520 | * @return vector |
||
521 | */ |
||
522 | public function powVector(\Np\vector $vector): vector { |
||
529 | } |
||
1 ignored issue
–
show
|
|||
530 | } |
||
531 | |||
532 | /** |
||
533 | * |
||
534 | * @param \Np\vector $vector |
||
535 | * @return vector |
||
536 | */ |
||
537 | public function modVector(\Np\vector $vector): vector { |
||
538 | if ($this->checkDimensions($vector) && $this->checkDtype($vector)) { |
||
539 | $vr = self::factory($this->col, $this->dtype); |
||
540 | for ($i = 0; $i < $this->col; ++$i) { |
||
541 | $vr->data[$i] = $this->data[$i] % $vector->data[$i]; |
||
542 | } |
||
543 | return $vr; |
||
544 | } |
||
1 ignored issue
–
show
|
|||
545 | } |
||
546 | |||
547 | /** |
||
548 | * |
||
549 | * @param int|float|matrix|vector $d |
||
550 | * @return matrix|vector |
||
551 | */ |
||
552 | public function subtract(int|float|matrix|vector $d): matrix|vector { |
||
553 | if ($d instanceof matrix) { |
||
554 | return $this->subtractMatrix($d); |
||
555 | } elseif ($d instanceof self) { |
||
556 | return $this->subtractVector($d); |
||
557 | } else { |
||
558 | return $this->substractScalar($d); |
||
559 | } |
||
560 | } |
||
561 | |||
562 | /** |
||
563 | * |
||
564 | * @param \Np\matrix $m |
||
565 | * @return matrix |
||
566 | */ |
||
567 | protected function subtractMatrix(\Np\matrix $m): matrix { |
||
568 | if ($this->col == $m->col && $this->dtype == $m->dtype) { |
||
569 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
570 | for ($i = 0; $i < $m->row; ++$i) { |
||
571 | for ($j = 0; $j < $m->col; ++$j) { |
||
572 | $vr->data[$i * $m->col + $j] = $this->data[$j] - $m->data[$i * $m->col + $j]; |
||
573 | } |
||
574 | } |
||
575 | return $vr; |
||
576 | } |
||
577 | self::_invalidArgument(''); |
||
1 ignored issue
–
show
|
|||
578 | } |
||
579 | |||
580 | /** |
||
581 | * |
||
582 | * @param \Np\vector $vector |
||
583 | * @return vector |
||
584 | */ |
||
585 | protected function subtractVector(\Np\vector $vector): vector { |
||
586 | if ($this->checkDimensions($vector) && $this->checkDtype($vector)) { |
||
587 | $vr = self::factory($this->col, $this->dtype); |
||
588 | for ($i = 0; $i < $this->col; ++$i) { |
||
589 | $vr->data[$i] = $this->data[$i] - $vector->data[$i]; |
||
590 | } |
||
591 | return $vr; |
||
592 | } |
||
1 ignored issue
–
show
|
|||
593 | } |
||
594 | |||
595 | /** |
||
596 | * |
||
597 | * @param \Np\vector $scalar |
||
598 | * @return \Np\vector |
||
599 | */ |
||
600 | protected function substractScalar(int|float $scalar): vector { |
||
601 | $vr = self::factory($this->col, $this->dtype); |
||
602 | for ($i = 0; $i < $this->col; ++$i) { |
||
603 | $vr->data[$i] = $this->data[$i] - $scalar; |
||
604 | } |
||
605 | return $vr; |
||
606 | } |
||
607 | |||
608 | /** |
||
609 | * |
||
610 | * @param \Np\vector $v |
||
611 | * @param int $stride |
||
612 | * @return vector |
||
613 | */ |
||
614 | public function convolve(\Np\vector $v, int $stride = 1): vector { |
||
616 | } |
||
617 | |||
618 | /** |
||
619 | * Return the inner product of two vectors. |
||
620 | * |
||
621 | * @param \Np\vector $vector |
||
622 | * @return float |
||
623 | */ |
||
624 | public function inner(\Np\vector $vector) { |
||
625 | return $this->dotVector($vector); |
||
626 | } |
||
627 | |||
628 | public function l1_norm() { |
||
629 | |||
630 | } |
||
631 | |||
632 | public function l2_norm() { |
||
633 | |||
634 | } |
||
635 | |||
636 | /** |
||
637 | * sort the vector |
||
638 | * @param string $type i or d |
||
639 | * |
||
640 | */ |
||
641 | public function sort($type = 'i') { |
||
642 | lapack::sort($this, $type); |
||
643 | return $this; |
||
644 | } |
||
645 | |||
646 | /** |
||
647 | * set data to vector |
||
648 | * @param int|float|array $data |
||
649 | */ |
||
650 | public function setData(int|float|array $data) { |
||
651 | if (is_array($data) && !is_array($data[0])) { |
||
652 | for ($i = 0; $i < $this->col; ++$i) { |
||
653 | $this->data[$i] = $data[$i]; |
||
654 | } |
||
655 | } elseif (is_numeric($data)) { |
||
656 | for ($i = 0; $i < $this->col; ++$i) { |
||
657 | $this->data[$i] = $data; |
||
658 | } |
||
659 | } |
||
660 | } |
||
661 | |||
662 | public function asMatrix(): matrix { |
||
663 | $size = (int) sqrt($this->col); |
||
664 | $ar = matrix::factory($size, $size, $this->dtype); |
||
665 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
666 | $ar->data[$i] = $this->data[$i]; |
||
667 | } |
||
668 | return $ar; |
||
669 | } |
||
670 | |||
671 | /** |
||
672 | * get the shape of matrix |
||
673 | * @return int |
||
674 | */ |
||
675 | public function getShape(): int { |
||
676 | return $this->col; |
||
677 | } |
||
678 | |||
679 | public function getDtype() { |
||
680 | return $this->dtype; |
||
681 | } |
||
682 | |||
683 | public function asArray() { |
||
684 | $ar = array_fill(0, $this->col, null); |
||
685 | for ($i = 0; $i < $this->col; ++$i) { |
||
686 | $ar[$i] = $this->data[$i]; |
||
687 | } |
||
688 | return $ar; |
||
689 | } |
||
690 | |||
691 | public function printVector() { |
||
692 | for ($j = 0; $j < $this->col; ++$j) { |
||
693 | printf('%lf ', $this->data[$j]); |
||
694 | } |
||
695 | echo PHP_EOL; |
||
696 | } |
||
697 | |||
698 | public function __toString() { |
||
699 | return (string) $this->printVector(); |
||
1 ignored issue
–
show
|
|||
700 | } |
||
701 | |||
702 | protected function checkDimensions(vector $vector) { |
||
707 | } |
||
708 | |||
709 | protected function checkDtype(vector $vector) { |
||
710 | if ($this->dtype != $vector->dtype) { |
||
711 | throw new dtypeException('Mismatch dtype of given vector'); |
||
712 | } |
||
713 | return true; |
||
714 | } |
||
715 | |||
716 | protected function __construct(int $col, int $dtype = self::FLOAT) { |
||
717 | if ($col < 1) { |
||
718 | throw new invalidArgumentException('* To create Numphp/Vector col must be greater than 0!, Op Failed! * '); |
||
719 | } |
||
720 | parent::__construct($col, $dtype); |
||
721 | $this->col = $col; |
||
722 | return $this; |
||
723 | } |
||
724 | |||
725 | } |
||
726 |
For hinted functions/methods where all return statements with the correct type are only reachable via conditions, ?null? gets implicitly returned which may be incompatible with the hinted type. Let?s take a look at an example: