Total Complexity | 150 |
Total Lines | 795 |
Duplicated Lines | 0 % |
Changes | 12 | ||
Bugs | 5 | Features | 0 |
Complex classes like vector often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use vector, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
27 | class vector extends nd { |
||
28 | use ops, linAlg; |
||
29 | |||
30 | /** |
||
31 | * Factory method to build a new vector. |
||
32 | * |
||
33 | * @param int $col |
||
34 | * @param int $dtype |
||
35 | * @return vector |
||
36 | */ |
||
37 | public static function factory(int $col, int $dtype = self::FLOAT): vector { |
||
38 | return new self($col, $dtype); |
||
39 | } |
||
40 | |||
41 | /** |
||
42 | * Build a new vector from a php array. |
||
43 | * |
||
44 | * @param array $data |
||
45 | * @param int $dtype |
||
46 | * @return vector |
||
47 | */ |
||
48 | public static function ar(array $data, int $dtype = self::FLOAT): vector { |
||
49 | if (is_array($data) && !is_array($data[0])) { |
||
50 | $ar = self::factory(count($data), $dtype); |
||
51 | $ar->setData($data); |
||
52 | return $ar; |
||
53 | } else { |
||
54 | self::_err('data must be of same dimensions'); |
||
55 | } |
||
56 | } |
||
57 | |||
58 | /** |
||
59 | * Return vector with random values |
||
60 | * @param int $col |
||
61 | * @param int $dtype |
||
62 | * @return vector |
||
63 | */ |
||
64 | public static function randn(int $col, int $dtype = self::FLOAT): vector { |
||
65 | $ar = self::factory($col, $dtype); |
||
66 | $max = getrandmax(); |
||
67 | for ($i = 0; $i < $ar->col; ++$i) { |
||
68 | $ar->data[$i] = rand() / $max; |
||
69 | } |
||
70 | return $ar; |
||
71 | } |
||
72 | |||
73 | /** |
||
74 | * Return vector with uniform values |
||
75 | * @param int $col |
||
76 | * @param int $dtype |
||
77 | * @return vector |
||
78 | */ |
||
79 | public static function uniform(int $col, int $dtype = self::FLOAT): vector { |
||
80 | $ar = self::factory($col, $dtype); |
||
81 | $max = getrandmax(); |
||
82 | for ($i = 0; $i < $col; ++$i) { |
||
83 | $ar->data[$i] = rand(-$max, $max) / $max; |
||
84 | } |
||
85 | return $ar; |
||
86 | } |
||
87 | |||
88 | /** |
||
89 | * Build a vector of zeros with n elements. |
||
90 | * |
||
91 | * @param int $col |
||
92 | * @param int $dtype |
||
93 | * @return vector |
||
94 | */ |
||
95 | public static function zeros(int $col, int $dtype = self::FLOAT): vector { |
||
96 | $ar = self::factory($col, $dtype); |
||
97 | for ($i = 0; $i < $col; ++$i) { |
||
98 | $ar->data[$i] = 0; |
||
99 | } |
||
100 | return $ar; |
||
101 | } |
||
102 | |||
103 | /** |
||
104 | * create one like vector |
||
105 | * |
||
106 | * @param int $col |
||
107 | * @return vector |
||
108 | */ |
||
109 | public static function ones(int $col, int $dtype = self::FLOAT): vector { |
||
110 | $ar = self::factory($col, $dtype); |
||
111 | for ($i = 0; $i < $col; ++$i) { |
||
112 | $ar->data[$i] = 1; |
||
113 | } |
||
114 | return $ar; |
||
115 | } |
||
116 | |||
117 | /** |
||
118 | * create a null like vector |
||
119 | * @param int $col |
||
120 | * @return vector |
||
121 | */ |
||
122 | public static function null(int $col, int $dtype = self::FLOAT): vector { |
||
123 | $ar = self::factory($col, $dtype); |
||
124 | for ($i = 0; $i < $col; ++$i) { |
||
125 | $ar->data[$i] = null; |
||
126 | } |
||
127 | return $ar; |
||
128 | } |
||
129 | |||
130 | /** |
||
131 | * create a vector with given scalar value |
||
132 | * @param int $col |
||
133 | * @param int|float|double $val |
||
134 | * @param int $dtype |
||
135 | * @return vector |
||
136 | */ |
||
137 | public static function full(int $col, int|float $val, int $dtype = self::FLOAT): vector { |
||
138 | $ar = self::factory($col, $dtype); |
||
139 | for ($i = 0; $i < $col; ++$i) { |
||
140 | $ar->data[$i] = $val; |
||
141 | } |
||
142 | return $ar; |
||
143 | } |
||
144 | |||
145 | /** |
||
146 | * Return evenly spaced values within a given interval. |
||
147 | * |
||
148 | * @param int|float $start |
||
149 | * @param int|float $end |
||
150 | * @param int|float $interval |
||
151 | * @param int $dtype |
||
152 | * @return vector |
||
153 | */ |
||
154 | public static function range(int|float $start, int|float $end, int|float $interval = 1, int $dtype = self::FLOAT): vector { |
||
155 | return self::ar(range($start, $end, $interval), $dtype); |
||
156 | } |
||
157 | |||
158 | /** |
||
159 | * Return a Gaussian random vector with mean 0 |
||
160 | * and unit variance. |
||
161 | * |
||
162 | * @param int $n |
||
163 | * @param int $dtype |
||
164 | * @return self |
||
165 | */ |
||
166 | public static function gaussian(int $n, int $dtype = self::FLOAT): vector { |
||
167 | $max = getrandmax(); |
||
168 | $a = []; |
||
169 | while (count($a) < $n) { |
||
170 | $r = sqrt(-2.0 * log(rand() / $max)); |
||
171 | $phi = rand() / $max * (2. * M_PI); |
||
172 | $a[] = $r * sin($phi); |
||
173 | $a[] = $r * cos($phi); |
||
174 | } |
||
175 | if (count($a) > $n) { |
||
176 | $a = array_slice($a, 0, $n); |
||
177 | } |
||
178 | return self::ar($a, $dtype); |
||
179 | } |
||
180 | |||
181 | /** |
||
182 | * Generate a vector with n elements from a Poisson distribution. |
||
183 | * |
||
184 | * @param int $n |
||
185 | * @param float $lambda |
||
186 | * @param int $dtype |
||
187 | * @return vector |
||
188 | */ |
||
189 | public static function poisson(int $n, float $lambda = 1.0, int $dtype = self::FLOAT): vector { |
||
190 | $max = getrandmax(); |
||
191 | $l = exp(-$lambda); |
||
192 | $a = new self($n, $dtype); |
||
193 | for ($i = 0; $i < $n; ++$i) { |
||
194 | $k = 0; |
||
195 | $p = 1.0; |
||
196 | while ($p > $l) { |
||
197 | ++$k; |
||
198 | $p *= rand() / $max; |
||
199 | } |
||
200 | $a->data[$i] = $k - 1; |
||
201 | } |
||
202 | return $a; |
||
203 | } |
||
204 | |||
205 | /** |
||
206 | * Return a vector of n evenly spaced numbers between minimum and maximum. |
||
207 | * |
||
208 | * @param float $min |
||
209 | * @param float $max |
||
210 | * @param int $n |
||
211 | * @param int $dtype |
||
212 | * @throws invalidArgumentException |
||
213 | * @return vector |
||
214 | */ |
||
215 | public static function linspace(float $min, float $max, int $n, int $dtype = self::FLOAT): vector { |
||
216 | if ($min > $max) { |
||
217 | throw new invalidArgumentException('Minimum must be less than maximum.'); |
||
218 | } |
||
219 | if ($n < 2) { |
||
220 | throw new invalidArgumentException('Number of elements must be greater than 1.'); |
||
221 | } |
||
222 | $k = $n - 1; |
||
223 | $interval = abs($max - $min) / $k; |
||
224 | $a = [$min]; |
||
225 | while (count($a) < $k) { |
||
226 | $a[] = end($a) + $interval; |
||
227 | } |
||
228 | $a[] = $max; |
||
229 | return self::ar($a, $dtype); |
||
230 | } |
||
231 | |||
232 | /** |
||
233 | * Return the index of the minimum element in the vector. |
||
234 | * |
||
235 | * @return int |
||
236 | */ |
||
237 | public function argMin(): int { |
||
238 | return blas::min($this); |
||
239 | } |
||
240 | |||
241 | /** |
||
242 | * Return the index of the maximum element in the vector. |
||
243 | * |
||
244 | * @return int |
||
245 | */ |
||
246 | public function argMax(): int { |
||
247 | return blas::max($this); |
||
248 | } |
||
249 | |||
250 | /** |
||
251 | * The sum of the vector. |
||
252 | * @return float |
||
253 | */ |
||
254 | public function sum(): float { |
||
255 | return blas::asum($this); |
||
256 | } |
||
257 | |||
258 | /** |
||
259 | * Return the product of the vector. |
||
260 | * @return int|float |
||
261 | */ |
||
262 | public function product(): float { |
||
263 | $r = 1.0; |
||
264 | for ($i = 0; $i < $this->col; ++$i) { |
||
265 | $r *= $this->data[$i]; |
||
266 | } |
||
267 | return $r; |
||
268 | } |
||
269 | |||
270 | /** |
||
271 | * Compute the vector-matrix dot product of this vector and matrix . |
||
272 | * @param \Np\matrix $m |
||
273 | * @return vector |
||
274 | */ |
||
275 | public function dotMatrix(\Np\matrix $m): vector { |
||
276 | if ($this->checkDtype($this, $m)) { |
||
277 | $mvr = self::factory($this->col, $this->dtype); |
||
278 | core\blas::gemv($m, $this, $mvr); |
||
279 | return $mvr; |
||
280 | } |
||
281 | } |
||
282 | |||
283 | /** |
||
284 | * |
||
285 | * @param int|float|matrix|vector $d |
||
286 | * @return matrix|vector |
||
287 | */ |
||
288 | public function divide(int|float|matrix|vector $d): matrix|vector { |
||
289 | if ($d instanceof matrix) { |
||
290 | return $this->divideMatrix($d); |
||
291 | } elseif ($d instanceof self) { |
||
292 | return $this->divideVector($d); |
||
293 | } else { |
||
294 | return $this->divideScalar($d); |
||
295 | } |
||
296 | } |
||
297 | |||
298 | /** |
||
299 | * |
||
300 | * @param \Np\matrix $m |
||
301 | * @return matrix |
||
302 | */ |
||
303 | protected function divideMatrix(\Np\matrix $m): matrix { |
||
304 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
305 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
306 | for ($i = 0; $i < $m->row; ++$i) { |
||
307 | for ($j = 0; $j < $m->col; ++$j) { |
||
308 | $vr->data[$i * $m->col + $j] = $this->data[$j] / $m->data[$i * $m->col + $j]; |
||
309 | } |
||
310 | } |
||
311 | return $vr; |
||
312 | } |
||
313 | } |
||
314 | |||
315 | /** |
||
316 | * |
||
317 | * @param vector $v |
||
318 | * @return vector |
||
319 | */ |
||
320 | protected function divideVector(vector $v): vector { |
||
321 | if ($this->checkShape($this, $v) && $this->checkDtype($this, $v)) { |
||
322 | $vr = self::factory($this->col, $this->dtype); |
||
323 | for ($i = 0; $i < $this->col; ++$i) { |
||
324 | $vr->data[$i] = $this->data[$i] / $v->data[$i]; |
||
325 | } |
||
326 | return $vr; |
||
327 | } |
||
328 | } |
||
329 | |||
330 | /** |
||
331 | * |
||
332 | * @param int|float $s |
||
333 | * @return vector |
||
334 | */ |
||
335 | protected function divideScalar(int|float $s): vector { |
||
336 | $vr = self::factory($this->col, $this->dtype); |
||
337 | for ($i = 0; $i < $this->col; ++$i) { |
||
338 | $vr->data[$i] = $this->data[$i] / $s; |
||
339 | } |
||
340 | return $vr; |
||
341 | } |
||
342 | |||
343 | /** |
||
344 | * |
||
345 | * @param int|float|matrix|vector $d |
||
346 | * @return matrix|vector |
||
347 | */ |
||
348 | public function multiply(int|float|matrix|vector $d): matrix|vector { |
||
349 | if ($d instanceof matrix) { |
||
350 | return $this->multiplyMatrix($d); |
||
351 | } elseif ($d instanceof self) { |
||
352 | return $this->multiplyVector($d); |
||
353 | } else { |
||
354 | return $this->multiplyScalar($d); |
||
355 | } |
||
356 | } |
||
357 | |||
358 | /** |
||
359 | * |
||
360 | * @param \Np\matrix $m |
||
361 | * @return matrix |
||
362 | */ |
||
363 | protected function multiplyMatrix(\Np\matrix $m): matrix { |
||
364 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
365 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
366 | for ($i = 0; $i < $m->row; ++$i) { |
||
367 | for ($j = 0; $j < $m->col; ++$j) { |
||
368 | $vr->data[$i * $m->col + $j] = $this->data[$j] * $m->data[$i * $m->col + $j]; |
||
369 | } |
||
370 | } |
||
371 | return $vr; |
||
372 | } |
||
373 | } |
||
374 | |||
375 | /** |
||
376 | * |
||
377 | * @param \Np\vector $vector |
||
378 | * @return vector |
||
379 | */ |
||
380 | protected function multiplyVector(\Np\vector $vector): vector { |
||
381 | if ($this->checkShape($this, $vector) && $this->checkDtype($this, $vector)) { |
||
382 | $vr = self::factory($this->col, $this->dtype); |
||
383 | for ($i = 0; $i < $this->col; ++$i) { |
||
384 | $vr->data[$i] = $this->data[$i] * $vector->data[$i]; |
||
385 | } |
||
386 | return $vr; |
||
387 | } |
||
388 | } |
||
389 | |||
390 | /** |
||
391 | * |
||
392 | * @param int|float $s |
||
393 | * @return vector |
||
394 | */ |
||
395 | protected function multiplyScalar(int|float $s): vector { |
||
396 | $vr = $this->copy(); |
||
397 | blas::scale($s, $vr); |
||
398 | return $vr; |
||
399 | } |
||
400 | |||
401 | /** |
||
402 | * |
||
403 | * @param int|float|matrix|vector $d |
||
404 | * @return matrix|vector |
||
405 | */ |
||
406 | public function add(int|float|matrix|vector $d): matrix|vector { |
||
407 | if ($d instanceof matrix) { |
||
408 | return $this->addMatrix($d); |
||
409 | } elseif ($d instanceof self) { |
||
410 | return $this->addVector($d); |
||
411 | } else { |
||
412 | return $this->addScalar($d); |
||
413 | } |
||
414 | } |
||
415 | |||
416 | /** |
||
417 | * |
||
418 | * @param \Np\matrix $m |
||
419 | * @return matrix |
||
420 | */ |
||
421 | protected function addMatrix(\Np\matrix $m): matrix { |
||
422 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
423 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
424 | for ($i = 0; $i < $m->row; ++$i) { |
||
425 | for ($j = 0; $j < $m->col; ++$j) { |
||
426 | $vr->data[$i * $m->col + $j] = $this->data[$j] + $m->data[$i * $m->col + $j]; |
||
427 | } |
||
428 | } |
||
429 | return $vr; |
||
430 | } |
||
431 | } |
||
432 | |||
433 | /** |
||
434 | * |
||
435 | * @param \Np\vector $vector |
||
436 | * @return vector |
||
437 | */ |
||
438 | protected function addVector(\Np\vector $vector): vector { |
||
445 | } |
||
446 | } |
||
447 | |||
448 | /** |
||
449 | * |
||
450 | * @param int|float $s |
||
451 | * @return vector |
||
452 | */ |
||
453 | protected function addScalar(int|float $s): vector { |
||
454 | $vr = $this->copy(); |
||
455 | for ($i = 0; $i < $this->col; ++$i) { |
||
456 | $vr->data[$i] += $s; |
||
457 | } |
||
458 | return $vr; |
||
459 | } |
||
460 | |||
461 | /** |
||
462 | * |
||
463 | * @param int|float|\Np\matrix|\Np\vector $d |
||
464 | * @return matrix|vector |
||
465 | */ |
||
466 | public function pow(int|float|\Np\matrix|\Np\vector $d): matrix|vector { |
||
467 | if ($d instanceof matrix) { |
||
468 | return $this->powMatrix($d); |
||
469 | } elseif ($d instanceof vector) { |
||
470 | return $this->powVector($d); |
||
471 | } else { |
||
472 | return $this->powScalar($d); |
||
473 | } |
||
474 | } |
||
475 | |||
476 | /** |
||
477 | * |
||
478 | * @param \Np\matrix $m |
||
479 | * @return matrix |
||
480 | */ |
||
481 | protected function powMatrix(\Np\matrix $m): matrix { |
||
482 | if ($this->checkDimensions($this, $m) && $this->checkDtype($this, $m)) { |
||
483 | $ar = matrix::factory($m->row, $m->col, $this->dtype); |
||
484 | for ($i = 0; $i < $m->row; ++$i) { |
||
485 | for ($j = 0; $j < $m->col; ++$j) { |
||
486 | $ar->data[$i * $m->col + $j] = $m->data[$i * $m->col + $j] ** $this->data[$j]; |
||
487 | } |
||
488 | } |
||
489 | return $ar; |
||
490 | } |
||
491 | } |
||
492 | |||
493 | /** |
||
494 | * |
||
495 | * @param \Np\vector $vector |
||
496 | * @return vector |
||
497 | */ |
||
498 | protected function powVector(\Np\vector $vector): vector { |
||
505 | } |
||
506 | } |
||
507 | |||
508 | /** |
||
509 | * |
||
510 | * @param int|float $s |
||
511 | * @return vector |
||
512 | */ |
||
513 | protected function powScalar(int|float $s): vector { |
||
514 | $v = $this->copy(); |
||
515 | for ($i = 0; $i < $this->col; ++$i) { |
||
516 | $v->data[$i] = $v->data[$i] ** $s; |
||
517 | } |
||
518 | return $v; |
||
519 | } |
||
520 | |||
521 | /** |
||
522 | * |
||
523 | * @param int|float|\Np\matrix|\Np\vector $d |
||
524 | * @return matrix|vector |
||
525 | */ |
||
526 | public function mod(int|float|\Np\matrix|\Np\vector $d): matrix|vector { |
||
527 | if ($d instanceof matrix) { |
||
528 | return $this->powMatrix($d); |
||
529 | } elseif ($d instanceof vector) { |
||
530 | return $this->powVector($d); |
||
531 | } else { |
||
532 | return $this->powScalar($d); |
||
533 | } |
||
534 | } |
||
535 | |||
536 | /** |
||
537 | * |
||
538 | * @param \Np\matrix $m |
||
539 | * @return matrix |
||
540 | */ |
||
541 | protected function modMatrix(\Np\matrix $m): matrix { |
||
542 | if ($this->checkDimensions($this, $m) && $this->checkDtype($this, $m)) { |
||
543 | $ar = matrix::factory($m->row, $m->col, $this->dtype); |
||
544 | for ($i = 0; $i < $m->row; ++$i) { |
||
545 | for ($j = 0; $j < $m->col; ++$j) { |
||
546 | $ar->data[$i * $m->col + $j] = $m->data[$i * $m->col + $j] % $this->data[$j]; |
||
547 | } |
||
548 | } |
||
549 | return $ar; |
||
550 | } |
||
551 | } |
||
552 | |||
553 | /** |
||
554 | * |
||
555 | * @param \Np\vector $vector |
||
556 | * @return vector |
||
557 | */ |
||
558 | protected function modVector(\Np\vector $vector): vector { |
||
559 | if ($this->checkShape($this, $vector) && $this->checkDtype($this, $vector)) { |
||
560 | $vr = self::factory($this->col, $this->dtype); |
||
561 | for ($i = 0; $i < $this->col; ++$i) { |
||
562 | $vr->data[$i] = $this->data[$i] % $vector->data[$i]; |
||
563 | } |
||
564 | return $vr; |
||
565 | } |
||
566 | } |
||
567 | |||
568 | /** |
||
569 | * |
||
570 | * @param int|float $s |
||
571 | */ |
||
572 | protected function modScalar(int|float $s) { |
||
573 | $v = $this->copy(); |
||
574 | for ($i = 0; $i < $this->col; ++$i) { |
||
575 | $v->data[$i] = $v->data[$i] % $s; |
||
576 | } |
||
577 | } |
||
578 | |||
579 | /** |
||
580 | * |
||
581 | * @param int|float|matrix|vector $d |
||
582 | * @return matrix|vector |
||
583 | */ |
||
584 | public function subtract(int|float|matrix|vector $d): matrix|vector { |
||
585 | if ($d instanceof matrix) { |
||
586 | return $this->subtractMatrix($d); |
||
587 | } elseif ($d instanceof self) { |
||
588 | return $this->subtractVector($d); |
||
589 | } else { |
||
590 | return $this->substractScalar($d); |
||
591 | } |
||
592 | } |
||
593 | |||
594 | /** |
||
595 | * |
||
596 | * @param \Np\matrix $m |
||
597 | * @return matrix |
||
598 | */ |
||
599 | protected function subtractMatrix(\Np\matrix $m): matrix { |
||
600 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
601 | $vr = matrix::factory($m->row, $m->col, $m->dtype); |
||
602 | for ($i = 0; $i < $m->row; ++$i) { |
||
603 | for ($j = 0; $j < $m->col; ++$j) { |
||
604 | $vr->data[$i * $m->col + $j] = $this->data[$j] - $m->data[$i * $m->col + $j]; |
||
605 | } |
||
606 | } |
||
607 | return $vr; |
||
608 | } |
||
609 | } |
||
610 | |||
611 | /** |
||
612 | * |
||
613 | * @param \Np\vector $vector |
||
614 | * @return vector |
||
615 | */ |
||
616 | protected function subtractVector(\Np\vector $vector): vector { |
||
617 | if ($this->checkShape($this, $vector) && $this->checkDtype($this, $vector)) { |
||
618 | $vr = self::factory($this->col, $this->dtype); |
||
619 | for ($i = 0; $i < $this->col; ++$i) { |
||
620 | $vr->data[$i] = $this->data[$i] - $vector->data[$i]; |
||
621 | } |
||
622 | return $vr; |
||
623 | } |
||
624 | } |
||
625 | |||
626 | /** |
||
627 | * |
||
628 | * @param \Np\vector $scalar |
||
629 | * @return \Np\vector |
||
630 | */ |
||
631 | protected function substractScalar(int|float $scalar): vector { |
||
632 | $vr = self::factory($this->col, $this->dtype); |
||
633 | for ($i = 0; $i < $this->col; ++$i) { |
||
634 | $vr->data[$i] = $this->data[$i] - $scalar; |
||
635 | } |
||
636 | return $vr; |
||
637 | } |
||
638 | |||
639 | /** |
||
640 | * |
||
641 | * @param \Np\vector $v |
||
642 | * @param int $stride |
||
643 | * @return vector |
||
644 | */ |
||
645 | public function convolve(\Np\vector $v, int $stride = 1): vector { |
||
647 | } |
||
648 | |||
649 | public function max() { |
||
651 | } |
||
652 | |||
653 | public function min() { |
||
654 | $this->data[blas::min($this)]; |
||
655 | } |
||
656 | |||
657 | /** |
||
658 | * Return the inner product of two vectors. |
||
659 | * |
||
660 | * @param \Np\vector $vector |
||
661 | * |
||
662 | */ |
||
663 | public function inner(\Np\vector $vector) { |
||
664 | return $this->dotVector($vector); |
||
665 | } |
||
666 | |||
667 | /** |
||
668 | * Calculate the L1 norm of the vector. |
||
669 | * @return float |
||
670 | */ |
||
671 | public function normL1(): float { |
||
673 | } |
||
674 | |||
675 | public function normL2() { |
||
676 | return sqrt($this->square()->sum()); |
||
677 | } |
||
678 | |||
679 | public function normMax() { |
||
681 | } |
||
682 | |||
683 | public function normP(float $p = 2.5) { |
||
688 | } |
||
689 | |||
690 | /** |
||
691 | * Return the reciprocal of the vector element-wise. |
||
692 | * |
||
693 | * @return self |
||
694 | */ |
||
695 | public function reciprocal(): vector { |
||
696 | return self::ones($this->col, $this->dtype) |
||
697 | ->divideVector($this); |
||
698 | } |
||
699 | |||
700 | /** |
||
701 | * |
||
702 | * @return int|float |
||
703 | */ |
||
704 | public function mean():int|float { |
||
705 | return $this->sum()/ $this->col; |
||
706 | } |
||
707 | |||
708 | /** |
||
709 | * |
||
710 | * @return int|float |
||
711 | */ |
||
712 | public function median():int|float { |
||
713 | $mid = intdiv($this->col, 2); |
||
714 | |||
715 | $a = $this->copy()->sort(); |
||
716 | if ($this->col % 2 === 1) { |
||
717 | $median = $a->data[$mid]; |
||
718 | } else { |
||
719 | $median = ($a->data[$mid - 1] + $a->data[$mid]) / 2.; |
||
720 | } |
||
721 | return $median; |
||
722 | } |
||
723 | |||
724 | public function variance($mean = null) |
||
735 | } |
||
736 | |||
737 | /** |
||
738 | * |
||
739 | * @return vector |
||
740 | */ |
||
741 | public function square(): vector { |
||
742 | return $this->multiplyVector($this); |
||
743 | } |
||
744 | |||
745 | public function pop(): mixed { |
||
746 | $ar = $this->asArray(); |
||
747 | \FFI::free($this->data); |
||
748 | $val = array_shift($ar); |
||
749 | $v = self::ar($ar); |
||
750 | $this->col = $v->col; |
||
751 | $this->ndim = $v->ndim; |
||
752 | $this->data = $v->data; |
||
753 | unset($v); |
||
754 | unset($ar); |
||
755 | return $val; |
||
756 | } |
||
757 | |||
758 | /** |
||
759 | * sort the vector |
||
760 | * @param string $type i or d |
||
761 | * |
||
762 | */ |
||
763 | public function sort($type = 'i') { |
||
764 | lapack::sort($this, $type); |
||
765 | return $this; |
||
766 | } |
||
767 | |||
768 | /** |
||
769 | * set data to vector |
||
770 | * @param int|float|array $data |
||
771 | */ |
||
772 | public function setData(int|float|array $data) { |
||
773 | if (is_array($data) && !is_array($data[0])) { |
||
774 | for ($i = 0; $i < $this->col; ++$i) { |
||
775 | $this->data[$i] = $data[$i]; |
||
776 | } |
||
777 | } elseif (is_numeric($data)) { |
||
778 | for ($i = 0; $i < $this->col; ++$i) { |
||
779 | $this->data[$i] = $data; |
||
780 | } |
||
781 | } |
||
782 | } |
||
783 | |||
784 | /** |
||
785 | * get the size of vector |
||
786 | * @return int |
||
787 | */ |
||
788 | public function getSize(): int { |
||
789 | return $this->col; |
||
790 | } |
||
791 | |||
792 | public function getDtype() { |
||
793 | return $this->dtype; |
||
794 | } |
||
795 | |||
796 | public function asArray() { |
||
802 | } |
||
803 | |||
804 | public function printVector() { |
||
810 | } |
||
811 | |||
812 | public function __toString() { |
||
814 | } |
||
815 | |||
816 | protected function __construct(public int $col, int $dtype = self::FLOAT) { |
||
822 | } |
||
823 | |||
824 | } |
||
825 |