Total Complexity | 360 |
Total Lines | 1689 |
Duplicated Lines | 0 % |
Changes | 1 | ||
Bugs | 1 | Features | 0 |
Complex classes like matrix often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use matrix, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
27 | class matrix extends nd{ |
||
28 | |||
29 | /** |
||
30 | * create empty 2d matrix for given data type |
||
31 | * @param int $row num of rows |
||
32 | * @param int $col num of cols |
||
33 | * @param int $dtype matrix data type float|double |
||
34 | * @return \Np\matrix |
||
35 | */ |
||
36 | public static function factory(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
37 | return new self($row, $col, $dtype); |
||
38 | } |
||
39 | |||
40 | /** |
||
41 | * create 2d matrix using php array |
||
42 | * @param array $data |
||
43 | * @param int $dtype matrix data type float|double |
||
44 | * @return \Np\matrix |
||
45 | */ |
||
46 | public static function ar(array $data, int $dtype = self::FLOAT): matrix { |
||
47 | if (is_array($data) && is_array($data[0])) { |
||
48 | $ar = self::factory(count($data), count($data[0]), $dtype); |
||
49 | $ar->setData($data); |
||
50 | unset($data); |
||
51 | return $ar; |
||
52 | } else { |
||
53 | self::_err('given array is not rank-2 or given is not an array'); |
||
54 | } |
||
55 | } |
||
56 | |||
57 | /** |
||
58 | * create one like 2d matrix |
||
59 | * @param int $row |
||
60 | * @param int $col |
||
61 | * @return \Np\matrix |
||
62 | */ |
||
63 | public static function ones(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
64 | $ar = self::factory($row, $col, $dtype); |
||
65 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
66 | $ar->data[$i] = 1; |
||
67 | } |
||
68 | return $ar; |
||
69 | } |
||
70 | |||
71 | /** |
||
72 | * Create Matrix with random values |
||
73 | * @param int $row |
||
74 | * @param int $col |
||
75 | * @param int $dtype Float|Double |
||
76 | * @return \Np\matrix |
||
77 | */ |
||
78 | public static function randn(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
79 | $ar = self::factory($row, $col, $dtype); |
||
80 | $max = getrandmax(); |
||
81 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
82 | $ar->data[$i] = rand() / $max; |
||
83 | } |
||
84 | return $ar; |
||
85 | } |
||
86 | |||
87 | /** |
||
88 | * Return 2d matrix with uniform values |
||
89 | * @param int $row |
||
90 | * @param int $col |
||
91 | * @param int $dtype |
||
92 | * @return \Np\matrix |
||
93 | */ |
||
94 | public static function uniform(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
95 | $ar = self::factory($row, $col, $dtype); |
||
96 | $max = getrandmax(); |
||
97 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
98 | $ar->data[$i] = rand(-$max, $max) / $max; |
||
99 | } |
||
100 | return $ar; |
||
101 | } |
||
102 | |||
103 | /** |
||
104 | * Return a zero matrix with the given dimensions. |
||
105 | * @param int $row |
||
106 | * @param int $col |
||
107 | * @param int $dtype |
||
108 | * @return \Np\matrix |
||
109 | */ |
||
110 | public static function zeros(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
111 | $ar = self::factory($row, $col, $dtype); |
||
112 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
113 | $ar->data[$i] = 0.0; |
||
114 | } |
||
115 | return $ar; |
||
116 | } |
||
117 | |||
118 | /** |
||
119 | * create a null like 2d matrix |
||
120 | * @param int $row |
||
121 | * @param int $col |
||
122 | * @return \Np\matrix |
||
123 | */ |
||
124 | public static function null(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
125 | $ar = self::factory($row, $col, $dtype); |
||
126 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
127 | $ar->data[$i] = null; |
||
128 | } |
||
129 | return $ar; |
||
130 | } |
||
131 | |||
132 | /** |
||
133 | * create a 2d matrix with given scalar value |
||
134 | * @param int $row |
||
135 | * @param int $col |
||
136 | * @param int|float|double $val |
||
137 | * @return \Np\matrix |
||
138 | */ |
||
139 | public static function full(int $row, int $col, $val, int $dtype = self::FLOAT): matrix { |
||
140 | $ar = self::factory($row, $col, $dtype); |
||
141 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
142 | $ar->data[$i] = $val; |
||
143 | } |
||
144 | return $ar; |
||
145 | } |
||
146 | |||
147 | /** |
||
148 | * create a diagonal 2d matrix with given 1d array; |
||
149 | * @param array $elements |
||
150 | * @return \Np\matrix |
||
151 | */ |
||
152 | public static function diagonal(array $elements, int $dtype = self::FLOAT): matrix { |
||
153 | $n = count($elements); |
||
154 | $ar = self::factory($n, $n, $dtype); |
||
155 | for ($i = 0; $i < $n; ++$i) { |
||
156 | $ar->data[$i * $n + $i] = $elements[$i]; #for ($j = 0; $j < $n; ++$j) {$i === $j ? $elements[$i] : 0;#} |
||
157 | } |
||
158 | return $ar; |
||
159 | } |
||
160 | |||
161 | /** |
||
162 | * Generate a m x n matrix with elements from a Poisson distribution. |
||
163 | * @param int $row |
||
164 | * @param int $col |
||
165 | * @param float $lambda |
||
166 | * @param int $dtype |
||
167 | * @return \Np\matrix |
||
168 | */ |
||
169 | public static function poisson(int $row, int $col, float $lambda = 1.0, int $dtype = self::FLOAT): matrix { |
||
170 | $ar = self::factory($row, $col, $dtype); |
||
171 | $max = getrandmax(); |
||
172 | $l = exp(-$lambda); |
||
173 | for ($i = 0; $i < $row; ++$i) { |
||
174 | for ($j = 0; $j < $col; ++$j) { |
||
175 | $k = 0; |
||
176 | $p = 1.0; |
||
177 | while ($p > $l) { |
||
178 | ++$k; |
||
179 | $p = $p * rand() / $max; |
||
180 | } |
||
181 | $ar->data[$i * $col + $j] = $k - 1; |
||
182 | } |
||
183 | } |
||
184 | return $ar; |
||
185 | } |
||
186 | |||
187 | /** |
||
188 | * Return a standard normally distributed random matrix i.e values |
||
189 | * between -1 and 1. |
||
190 | * @param int $row |
||
191 | * @param int $col |
||
192 | * @param int $dtype Description |
||
193 | * @return \Np\matrix |
||
194 | */ |
||
195 | public static function gaussian(int $row, int $col, int $dtype = self::FLOAT): matrix { |
||
223 | } |
||
224 | |||
225 | /** |
||
226 | * create an identity matrix with the given dimensions. |
||
227 | * @param int $n |
||
228 | * @param int $dtype |
||
229 | * @return matrix |
||
230 | * @throws \InvalidArgumentException |
||
231 | */ |
||
232 | public static function identity(int $n, int $dtype = self::FLOAT): matrix { |
||
233 | if ($n < 1) { |
||
234 | self::_dimensionaMisMatchErr('dimensionality must be greater than 0 on all axes.'); |
||
235 | } |
||
236 | |||
237 | $ar = self::factory($n, $n, $dtype); |
||
238 | for ($i = 0; $i < $n; ++$i) { |
||
239 | for ($j = 0; $j < $n; ++$j) { |
||
240 | $ar->data[$i * $n + $j] = $i === $j ? 1 : 0; |
||
241 | } |
||
242 | } |
||
243 | return $ar; |
||
244 | } |
||
245 | |||
246 | /** |
||
247 | * Return the element-wise minimum of two matrices. |
||
248 | * |
||
249 | * @param \Np\matrix $m |
||
250 | * @return matrix |
||
251 | */ |
||
252 | public function minimum(matrix $m): matrix { |
||
259 | } |
||
260 | } |
||
261 | |||
262 | /** |
||
263 | * Return the element-wise maximum of two matrices. |
||
264 | * |
||
265 | * @param \Np\matrix $m |
||
266 | * @return matrix |
||
267 | */ |
||
268 | public function maximum(matrix $m): matrix { |
||
269 | if ($this->checkShape($this, $m)) { |
||
270 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
271 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
272 | $ar->data[$i] = max($this->data[$i], $m->data[$i]); |
||
273 | } |
||
274 | return $ar; |
||
275 | } |
||
276 | } |
||
277 | |||
278 | /** |
||
279 | * 2D convolution between a matrix ma and kernel kb, with a given stride. |
||
280 | * @param \Np\matrix $m |
||
281 | * @param int $stride |
||
282 | * @return matrix |
||
283 | */ |
||
284 | public function convolve(matrix $m, int $stride = 1): matrix { |
||
285 | return convolve::conv2D($this, $m, $stride); |
||
286 | } |
||
287 | |||
288 | /** |
||
289 | * Calculate the determinant of the matrix. |
||
290 | * @return float |
||
291 | */ |
||
292 | public function det(): float { |
||
293 | if (!$this->isSquare()) { |
||
294 | self::_err('determinant is undefined for a non square matrix'); |
||
295 | } |
||
296 | $lu = $this->lu(); |
||
297 | $nSwaps = $lu->p()->diagonalAsVector()->subtract($lu->p()->diagonalAsVector()->sum())->col - 1; |
||
298 | $detP = (-1) ** $nSwaps; |
||
299 | $detL = $lu->l()->diagonalAsVector()->product(); |
||
300 | $detU = $lu->u()->diagonalAsVector()->product(); |
||
301 | unset($lu); |
||
302 | return ($detP * $detL * $detU); |
||
303 | } |
||
304 | |||
305 | /** |
||
306 | * Return the trace of the matrix i.e the sum of all diagonal elements of a square matrix. |
||
307 | * @return float |
||
308 | */ |
||
309 | public function trace(): float { |
||
310 | if (!$this->isSquare()) { |
||
311 | self::_err('Error::matrix is not a squared can not Trace!'); |
||
312 | } |
||
313 | $trace = 0.0; |
||
314 | for ($i = 0; $i < $this->row; ++$i) { |
||
315 | for ($j = 0; $j < $this->col; ++$j) { |
||
316 | if ($i == $j) { |
||
317 | $trace += $this->data[$i * $this->col + $i]; |
||
318 | } |
||
319 | } |
||
320 | } |
||
321 | return $trace; |
||
322 | } |
||
323 | |||
324 | /** |
||
325 | * dignoalInterChange |
||
326 | */ |
||
327 | public function dignoalInterChange() { |
||
332 | } |
||
333 | } |
||
334 | } |
||
335 | |||
336 | //----------------Linear Algebra Opreations------------------------------- |
||
337 | |||
338 | /** |
||
339 | * |
||
340 | * get dot product of m.m or m.v |
||
341 | * |
||
342 | * @param \Np\matrix|\Np\vector $d |
||
343 | * @return matrix|vector |
||
344 | */ |
||
345 | public function dot(matrix|vector $d): matrix|vector { |
||
346 | if ($d instanceof self) { |
||
347 | return $this->dotMatrix($d); |
||
348 | } else { |
||
349 | return $this->dotVector($d); |
||
350 | } |
||
351 | } |
||
352 | |||
353 | /** |
||
354 | * get matrix & matrix dot product |
||
355 | * @param \Np\matrix $matrix |
||
356 | * @return \Np\matrix |
||
357 | */ |
||
358 | protected function dotMatrix(matrix $matrix): matrix { |
||
363 | } |
||
364 | } |
||
365 | |||
366 | /** |
||
367 | * get dot product of matrix & a vector |
||
368 | * @param \Np\vector $vector |
||
369 | * @return \Np\vector |
||
370 | */ |
||
371 | protected function dotVector(vector $vector): vector { |
||
372 | if ($this->checkDtype($this, $vector) && $this->checkDimensions($vector, $this)) { |
||
373 | $mvr = vector::factory($this->col, $this->dtype); |
||
374 | blas::gemv($this, $vector, $mvr); |
||
375 | return $mvr; |
||
376 | } |
||
377 | } |
||
378 | |||
379 | //---------------Arthmetic Opreations----------------------------------- |
||
380 | |||
381 | /** |
||
382 | * multiply this matrix with another matrix|scalar element-wise |
||
383 | * Matrix Scalar\Matrix multiplication |
||
384 | * @param int|float|matrix|vector $m |
||
385 | * @return matrix|vector |
||
386 | */ |
||
387 | public function multiply(int|float|matrix|vector $m): matrix|vector { |
||
388 | if ($m instanceof self) { |
||
389 | return $this->multiplyMatrix($m); |
||
390 | } else if ($m instanceof vector) { |
||
391 | return $this->multiplyVector($m); |
||
392 | } else { |
||
393 | return $this->scale($m); |
||
394 | } |
||
395 | } |
||
396 | |||
397 | /** |
||
398 | * |
||
399 | * @param \Np\vector $v |
||
400 | * @return matrix |
||
401 | */ |
||
402 | protected function multiplyVector(vector $v): matrix { |
||
403 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
404 | $ar = matrix::factory($this->row, $this->col, $this->dtype); |
||
405 | for ($i = 0; $i < $this->row; ++$i) { |
||
406 | for ($j = 0; $j < $this->col; ++$j) { |
||
407 | $ar->data[$i * $this->col + $j] = $v->data[$j] * $this->data[$i * $this->col + $j]; |
||
408 | } |
||
409 | } |
||
410 | return $ar; |
||
411 | } |
||
412 | } |
||
413 | |||
414 | /** |
||
415 | * |
||
416 | * @param \Np\matrix $m |
||
417 | * @return matrix |
||
418 | */ |
||
419 | protected function multiplyMatrix(matrix $m): matrix { |
||
420 | if ($this->checkDtype($this, $m) && $this->checkShape($this, $m)) { |
||
421 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
422 | for ($i = 0; $i < $this->row; ++$i) { |
||
423 | for ($j = 0; $j < $this->col; ++$j) { |
||
424 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] * $m->data[$i * $this->col + $j]; |
||
425 | } |
||
426 | } |
||
427 | return $ar; |
||
428 | } |
||
429 | } |
||
430 | |||
431 | /** |
||
432 | * Sum of Rows of matrix |
||
433 | * @return vector |
||
434 | */ |
||
435 | public function sumRows(): vector { |
||
436 | $vr = vector::factory($this->row, $this->dtype); |
||
437 | for ($i = 0; $i < $this->row; ++$i) { |
||
438 | $sum = 0.0; |
||
439 | for ($j = 0; $j < $this->col; ++$j) { |
||
440 | $sum += $this->data[$i * $this->col + $j]; |
||
441 | } |
||
442 | $vr->data[$i] = $sum; |
||
443 | } |
||
444 | return $vr; |
||
445 | } |
||
446 | |||
447 | /** |
||
448 | * Sum of two matrix, vector or a scalar to current matrix |
||
449 | * |
||
450 | * @param int|float|matrix|vector $m |
||
451 | * @return matrix |
||
452 | */ |
||
453 | public function sum(int|float|matrix|vector $m): matrix { |
||
454 | if ($m instanceof self) { |
||
455 | return $this->sumMatrix($m); |
||
456 | } elseif ($m instanceof vector) { |
||
457 | return $this->sumVector($m); |
||
458 | } else { |
||
459 | return $this->sumScalar($m); |
||
460 | } |
||
461 | } |
||
462 | |||
463 | protected function sumScalar(int|float $s): matrix { |
||
464 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
465 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
466 | $ar->data[$i] = $this->data[$i] + $s; |
||
467 | } |
||
468 | return $ar; |
||
469 | } |
||
470 | |||
471 | protected function sumMatrix(matrix $m): matrix { |
||
472 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
473 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
474 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
475 | $ar->data[$i] = $this->data[$i] + $m->data[$i]; |
||
476 | } |
||
477 | return $ar; |
||
478 | } |
||
479 | } |
||
480 | |||
481 | protected function sumVector(vector $v): matrix { |
||
482 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
483 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
484 | for ($i = 0; $i < $this->row; ++$i) { |
||
485 | for ($j = 0; $j < $this->col; ++$j) { |
||
486 | $ar->data[$i * $this->col + $j] = $v->data[$j] + $this->data[$i * $this->col + $j]; |
||
487 | } |
||
488 | } |
||
489 | return $ar; |
||
490 | } |
||
491 | } |
||
492 | |||
493 | /** |
||
494 | * subtract another matrix, vector or a scalar to this matrix |
||
495 | * @param int|float|matrix|vector $d matrix|$scalar to subtract this matrix |
||
496 | * @return \Np\matrix |
||
497 | */ |
||
498 | public function subtract(int|float|matrix|vector $d): matrix { |
||
499 | if ($d instanceof self) { |
||
500 | return $this->subtractMatrix($d); |
||
501 | } elseif ($d instanceof vector) { |
||
502 | return $this->subtractVector($d); |
||
503 | } else { |
||
504 | return $this->subtractScalar($d); |
||
505 | } |
||
506 | } |
||
507 | |||
508 | protected function subtractScalar(int|float $s): matrix { |
||
509 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
510 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
511 | $ar->data[$i] = $this->data[$i] - $s; |
||
512 | } |
||
513 | return $ar; |
||
514 | } |
||
515 | |||
516 | /** |
||
517 | * |
||
518 | * @param matrix $m |
||
519 | * @return matrix |
||
520 | */ |
||
521 | protected function subtractMatrix(matrix $m): matrix { |
||
522 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
523 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
524 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
525 | $ar->data[$i] = $this->data[$i] - $m->data[$i]; |
||
526 | } |
||
527 | return $ar; |
||
528 | } |
||
529 | } |
||
530 | |||
531 | /** |
||
532 | * |
||
533 | * @param vector $v |
||
534 | * @return matrix |
||
535 | */ |
||
536 | protected function subtractVector(vector $v): matrix { |
||
537 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this,$v)) { |
||
538 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
539 | for ($i = 0; $i < $this->row; ++$i) { |
||
540 | for ($j = 0; $j < $this->col; ++$j) { |
||
541 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] - $v->data[$j]; |
||
542 | } |
||
543 | } |
||
544 | return $ar; |
||
545 | } |
||
546 | } |
||
547 | |||
548 | /** |
||
549 | * |
||
550 | * @param vector $v |
||
551 | * @return matrix |
||
552 | */ |
||
553 | public function subtractColumnVector(vector $v): matrix { |
||
554 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
555 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
556 | for ($j = 0; $j < $this->col; ++$j) { |
||
557 | for ($i = 0; $i < $this->row; ++$i) { |
||
558 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] - $v->data[$i]; |
||
559 | } |
||
560 | } |
||
561 | return $ar; |
||
562 | } |
||
563 | } |
||
564 | |||
565 | /** |
||
566 | * Return the division of two elements, element-wise. |
||
567 | * @param int|float|matrix $d |
||
568 | * @return matrix |
||
569 | */ |
||
570 | public function divide(int|float|matrix|vector $d): matrix { |
||
571 | if ($d instanceof self) { |
||
572 | return $this->divideMatrix($d); |
||
573 | } elseif ($d instanceof vector) { |
||
574 | return $this->divideVector($d); |
||
575 | } else { |
||
576 | return $this->divideScalar($d); |
||
577 | } |
||
578 | } |
||
579 | |||
580 | protected function divideMatrix(matrix $m): matrix { |
||
581 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
582 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
583 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
584 | $ar->data[$i] = $this->data[$i] / $m->data[$i]; |
||
585 | } |
||
586 | return $ar; |
||
587 | } |
||
588 | } |
||
589 | |||
590 | protected function divideVector(vector $v): matrix { |
||
591 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
592 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
593 | for ($i = 0; $i < $this->row; ++$i) { |
||
594 | for ($j = 0; $j < $this->col; ++$j) { |
||
595 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] / $v->data[$j]; |
||
596 | } |
||
597 | } |
||
598 | return $ar; |
||
599 | } |
||
600 | } |
||
601 | |||
602 | protected function divideScalar(int|float $s): matrix { |
||
603 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
604 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
605 | $ar->data[$i] = $this->data[$i] / $s; |
||
606 | } |
||
607 | return $ar; |
||
608 | } |
||
609 | |||
610 | /** |
||
611 | * |
||
612 | * Raise this matrix to the power of the element-wise entry in another matrix. |
||
613 | * |
||
614 | * @param int|float|matrix $m |
||
615 | * @return matrix |
||
616 | */ |
||
617 | public function pow(int|float|matrix|vector $d): matrix { |
||
618 | if ($d instanceof self) { |
||
619 | return $this->powMatrix($d); |
||
620 | } else if ($d instanceof vector) { |
||
621 | return $this->powVector($d); |
||
622 | } else { |
||
623 | return $this->powScalar($d); |
||
624 | } |
||
625 | } |
||
626 | |||
627 | protected function powMatrix(matrix $m): matrix { |
||
628 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
629 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
630 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
631 | $ar->data[$i] = $this->data[$i] ** $m->data[$i]; |
||
632 | } |
||
633 | return $ar; |
||
634 | } |
||
635 | } |
||
636 | |||
637 | protected function powVector(vector $v): matrix { |
||
638 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
639 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
640 | for ($i = 0; $i < $this->row; ++$i) { |
||
641 | for ($j = 0; $j < $this->col; ++$j) { |
||
642 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] ** $v->data[$j]; |
||
643 | } |
||
644 | } |
||
645 | return $ar; |
||
646 | } |
||
647 | } |
||
648 | |||
649 | protected function powScalar(int|float $s): matrix { |
||
650 | $ar = $this->copyMatrix(); |
||
651 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
652 | $ar->data[$i] **= $s; |
||
653 | } |
||
654 | return $ar; |
||
655 | } |
||
656 | |||
657 | /** |
||
658 | * Calculate the modulus i.e remainder of division between this matrix and another matrix. |
||
659 | * @param int|float|matrix|vector $d |
||
660 | * @return matrix |
||
661 | */ |
||
662 | public function mod(int|float|matrix|vector $d): matrix { |
||
663 | if ($d instanceof self) { |
||
664 | $this->modMatrix($d); |
||
665 | } else if ($d instanceof vector) { |
||
666 | $this->modVector($d); |
||
667 | } else { |
||
668 | $this->modScalar($d); |
||
669 | } |
||
670 | } |
||
671 | |||
672 | protected function modMatrix(matrix $m): matrix { |
||
673 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
674 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
675 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
676 | $ar->data[$i] = $this->data[$i] % $m->data[$i]; |
||
677 | } |
||
678 | return $ar; |
||
679 | } |
||
680 | } |
||
681 | |||
682 | protected function modVector(vector $v): matrix { |
||
683 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
684 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
685 | for ($i = 0; $i < $this->row; ++$i) { |
||
686 | for ($j = 0; $j < $this->col; ++$j) { |
||
687 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] % $v->data[$j]; |
||
688 | } |
||
689 | } |
||
690 | return $ar; |
||
691 | } |
||
692 | } |
||
693 | |||
694 | protected function modScalar(int|float $s): matrix { |
||
695 | $ar = $this->copyMatrix(); |
||
696 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
697 | $ar->data[$i] %= $s; |
||
698 | } |
||
699 | return $ar; |
||
700 | } |
||
701 | |||
702 | /** |
||
703 | * Return the element-wise reciprocal of the matrix. |
||
704 | * |
||
705 | * @return matrix |
||
706 | */ |
||
707 | public function reciprocal(): matrix { |
||
708 | return self::ones($this->row, $this->col, $this->dtype)->divideMatrix($this); |
||
709 | } |
||
710 | |||
711 | /** |
||
712 | * |
||
713 | * @param int|float $d |
||
714 | * @return bool |
||
715 | */ |
||
716 | public static function is_zero($d): bool { |
||
717 | if (abs($d) < self::EPSILON) { |
||
718 | return true; |
||
719 | } |
||
720 | return false; |
||
721 | } |
||
722 | |||
723 | /** |
||
724 | * is row zero |
||
725 | * @param int $row |
||
726 | * @return bool |
||
727 | */ |
||
728 | public function is_rowZero(int $row): bool { |
||
729 | for ($i = 0; $i < $this->col; ++$i) { |
||
730 | if ($this->data[$row * $this->col + $i] != 0) { |
||
731 | return false; |
||
732 | } |
||
733 | } |
||
734 | return true; |
||
735 | } |
||
736 | |||
737 | /** |
||
738 | * |
||
739 | * @return bool |
||
740 | */ |
||
741 | public function has_ZeroRow(): bool { |
||
742 | for ($i = 0; $i < $this->row; ++$i) { |
||
743 | if ($this->is_rowZero($i)) { |
||
744 | return true; |
||
745 | } |
||
746 | } |
||
747 | return false; |
||
748 | } |
||
749 | |||
750 | /** |
||
751 | * Transpose the matrix i.e row become cols and cols become rows. |
||
752 | * @return \Np\matrix |
||
753 | */ |
||
754 | public function transpose(): matrix { |
||
755 | $ar = self::factory($this->col, $this->row, $this->dtype); |
||
756 | for ($i = 0; $i < $ar->row; ++$i) { |
||
757 | for ($j = 0; $j < $ar->col; ++$j) { |
||
758 | $ar->data[$i * $ar->col + $j] = $this->data[$j * $ar->col + $i]; |
||
759 | } |
||
760 | } |
||
761 | return $ar; |
||
762 | } |
||
763 | |||
764 | /** |
||
765 | * swap specific values in matrix |
||
766 | * @param int $i1 |
||
767 | * @param int $i2 |
||
768 | */ |
||
769 | public function swapValue(int $i1, int $i2) { |
||
770 | $tmp = $this->data[$i1]; |
||
771 | $this->data[$i1] = $this->data[$i2]; |
||
772 | $this->data[$i2] = $tmp; |
||
773 | } |
||
774 | |||
775 | /** |
||
776 | * swap specific rows in matrix |
||
777 | * @param int $r1 |
||
778 | * @param int $r2 |
||
779 | */ |
||
780 | public function swapRows(int $r1, int $r2) { |
||
781 | for ($i = 0; $i < $this->col; ++$i) { |
||
782 | $tmp = $this->data[$r1 * $this->col + $i]; |
||
783 | $this->data[$r1 * $this->col + $i] = $this->data[$r2 * $this->col + $i]; |
||
784 | $this->data[$r2 * $this->col + $i] = $tmp; |
||
785 | } |
||
786 | } |
||
787 | |||
788 | /** |
||
789 | * swap specific cols in matrix |
||
790 | * @param int $c1 |
||
791 | * @param int $c2 |
||
792 | */ |
||
793 | public function swapCols(int $c1, int $c2) { |
||
794 | for ($i = 0; $i < $this->row; ++$i) { |
||
795 | $tmp = $this->data[$i * $this->row + $c1]; |
||
796 | $this->data[$i * $this->row + $c1] = $this->data[$i * $this->row + $c2]; |
||
797 | $this->data[$i * $this->row + $c2] = $tmp; |
||
798 | } |
||
799 | } |
||
800 | |||
801 | /** |
||
802 | * |
||
803 | * @param int|float $scalar |
||
804 | * @return matrix |
||
805 | */ |
||
806 | public function scale(int|float $scalar): matrix { |
||
807 | if ($scalar == 0) { |
||
808 | return self::zeros($this->row, $this->col, $this->dtype); |
||
809 | } |
||
810 | |||
811 | $ar = $this->copyMatrix(); |
||
812 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
813 | $ar->data[$i] *= $scalar; |
||
814 | } |
||
815 | |||
816 | return $ar; |
||
817 | } |
||
818 | |||
819 | /** |
||
820 | * scale all the elements of a row |
||
821 | * @param int $row |
||
822 | * @param int|float $c |
||
823 | */ |
||
824 | public function scaleRow(int $row, int|float $c) { |
||
825 | for ($i = 0; $i < $this->col; ++$i) { |
||
826 | $this->data[$row * $this->col + $i] *= $c; |
||
827 | } |
||
828 | } |
||
829 | |||
830 | /** |
||
831 | * scale all the elements of |
||
832 | * @param int $col |
||
833 | * @param int|float $c |
||
834 | */ |
||
835 | public function scaleCol(int $col, int|float $c) { |
||
836 | for ($i = 0; $i < $this->row; ++$i) { |
||
837 | $this->data[$i * $this->col + $col] *= $c; |
||
838 | } |
||
839 | } |
||
840 | |||
841 | /** |
||
842 | * Scale digonally |
||
843 | * @param int|float $c |
||
844 | * @param bool $lDig |
||
845 | */ |
||
846 | public function scaleDigonalCol(int|float $c, bool $lDig = true) { |
||
847 | if($lDig){ |
||
848 | for ($i = 0; $i < $this->row ; ++$i) { |
||
849 | $this->data[$i * $this->col + $i] *= $c; |
||
850 | } |
||
851 | } |
||
852 | else{ |
||
853 | for ($i = $this->row; $i > 0 ; --$i) { |
||
854 | $this->data[$i * $this->col - $i] *= $c; |
||
855 | } |
||
856 | } |
||
857 | } |
||
858 | |||
859 | /** |
||
860 | * |
||
861 | * @param int $r1 |
||
862 | * @param int $r2 |
||
863 | * @param float $c |
||
864 | */ |
||
865 | public function addScaleRow(int $r1, int $r2, float $c) { |
||
866 | for ($i = 0; $i < $this->col; ++$i) { |
||
867 | $this->data[$r2 * $this->col + $i] += $this->data[$r1 * $this->col + $i] * $c; |
||
868 | } |
||
869 | } |
||
870 | |||
871 | /** |
||
872 | * Attach given matrix to the left of this matrix. |
||
873 | * |
||
874 | * @param \Np\matrix $m |
||
875 | * @return \Np\matrix |
||
876 | */ |
||
877 | public function joinLeft(matrix $m): matrix { |
||
878 | if ($this->row != $m->row && !$this->checkDtype($this, $m)) { |
||
879 | self::_err('Error::Invalid size! or DataType!'); |
||
880 | } |
||
881 | $col = $this->col + $m->col; |
||
882 | $ar = self::factory($this->row, $col, $this->dtype); |
||
883 | for ($i = 0; $i < $this->row; ++$i) { |
||
884 | for ($j = 0; $j < $this->col; ++$j) { |
||
885 | $ar->data[$i * $col + $j] = $this->data[$i * $this->col + $j]; |
||
886 | } |
||
887 | for ($j = 0; $j < $m->col; ++$j) { |
||
888 | $ar->data[$i * $col + ($this->col + $j)] = $m->data[$i * $m->col + $j]; |
||
889 | } |
||
890 | } |
||
891 | return $ar; |
||
892 | } |
||
893 | |||
894 | /** |
||
895 | * Join matrix m to the Right of this matrix. |
||
896 | * @param \Np\matrix $m |
||
897 | * @return matrix |
||
898 | */ |
||
899 | public function joinRight(matrix $m): matrix { |
||
900 | if ($this->row != $m->row && !$this->checkDtype($this,$m)) { |
||
901 | self::_err('Error::Invalid size! or DataType!'); |
||
902 | } |
||
903 | $col = $this->col + $m->col; |
||
904 | $ar = self::factory($this->row, $col, $this->dtype); |
||
905 | for ($i = 0; $i < $m->row; ++$i) { |
||
906 | for ($j = 0; $j < $m->col; ++$j) { |
||
907 | $ar->data[$i * $col + $j] = $m->data[$i * $m->col + $j]; |
||
908 | } |
||
909 | for ($j = 0; $j < $this->col; ++$j) { |
||
910 | $ar->data[$i * $col + ($this->col + $j)] = $this->data[$i * $this->col + $j]; |
||
911 | } |
||
912 | } |
||
913 | return $ar; |
||
914 | } |
||
915 | |||
916 | /** |
||
917 | * Join matrix m Above this matrix. |
||
918 | * @param \Np\matrix $m |
||
919 | * @return matrix |
||
920 | */ |
||
921 | public function joinAbove(matrix $m): matrix { |
||
922 | if ($this->col !== $m->col && !$this->checkDtype($this, $m)) { |
||
923 | self::_err('Error::Invalid size! or DataType!'); |
||
924 | } |
||
925 | $row = $this->row + $m->row; |
||
926 | $ar = self::factory($row, $this->col, $this->dtype); |
||
927 | for ($i = 0; $i < $m->row; ++$i) { |
||
928 | for ($j = 0; $j < $m->col; ++$j) { |
||
929 | $ar->data[$i * $m->col + $j] = $m->data[$i * $m->col + $j]; |
||
930 | } |
||
931 | for ($j = 0; $j < $this->col; ++$j) { |
||
932 | $ar->data[($i + $this->row) * $this->col + $j] = $this->data[$i * $this->col + $j]; |
||
933 | } |
||
934 | } |
||
935 | return $ar; |
||
936 | } |
||
937 | |||
938 | /** |
||
939 | * Join matrix m below this matrix. |
||
940 | * @param \Np\matrix $m |
||
941 | * @return matrix |
||
942 | */ |
||
943 | public function joinBelow(matrix $m): matrix { |
||
944 | if ($this->col !== $m->col && !$this->checkDtype($this, $m)) { |
||
945 | self::_err('Error::Invalid size! or DataType!'); |
||
946 | } |
||
947 | $row = $this->row + $m->row; |
||
948 | $ar = self::factory($row, $this->col, $this->dtype); |
||
949 | for ($i = 0; $i < $this->row; ++$i) { |
||
950 | for ($j = 0; $j < $this->col; ++$j) { |
||
951 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j]; |
||
952 | } |
||
953 | for ($j = 0; $j < $m->col; ++$j) { |
||
954 | $ar->data[($i + $m->row) * $m->col + $j] = $m->data[$i * $m->col + $j]; |
||
955 | } |
||
956 | } |
||
957 | return $ar; |
||
958 | } |
||
959 | |||
960 | /** |
||
961 | * Calculate the row echelon form of the matrix. |
||
962 | * Return the reduced matrix. |
||
963 | * |
||
964 | * @return matrix|null |
||
965 | */ |
||
966 | public function ref(): matrix|null { |
||
967 | return ref::factory($this); |
||
968 | } |
||
969 | |||
970 | /** |
||
971 | * Return the lower triangular matrix of the Cholesky decomposition. |
||
972 | * |
||
973 | * @return matrix|null |
||
974 | */ |
||
975 | public function cholesky(): matrix|null { |
||
976 | return cholesky::factory($this); |
||
977 | } |
||
978 | |||
979 | /** |
||
980 | * FIXME-------------- |
||
981 | * RREF |
||
982 | * The reduced row echelon form (RREF) of a matrix. |
||
983 | * @return \Np\matrix |
||
984 | */ |
||
985 | public function rref(): matrix { |
||
986 | return rref::factory($this); |
||
987 | } |
||
988 | |||
989 | /** |
||
990 | * make copy of the matrix |
||
991 | * @return \Np\matrix |
||
992 | */ |
||
993 | public function copyMatrix(): matrix { |
||
994 | return clone $this; |
||
995 | } |
||
996 | |||
997 | /** |
||
998 | * |
||
999 | * @param int $cols |
||
1000 | * @return \Np\matrix |
||
1001 | */ |
||
1002 | public function diminish_left(int $cols): matrix { |
||
1003 | $ar = self::factory($this->row, $cols, $this->dtype); |
||
1004 | for ($i = 0; $i < $ar->row; ++$i) { |
||
1005 | for ($j = 0; $j < $ar->col; ++$j) { |
||
1006 | $ar->data[$i * $ar->col + $j] = $this->data[$i * $this->col + $j]; |
||
1007 | } |
||
1008 | } |
||
1009 | return $ar; |
||
1010 | } |
||
1011 | |||
1012 | /** |
||
1013 | * |
||
1014 | * @param int $cols |
||
1015 | * @return \Np\matrix |
||
1016 | */ |
||
1017 | public function diminish_right(int $cols): matrix { |
||
1018 | $ar = self::factory($this->row, $cols, $this->dtype); |
||
1019 | for ($i = 0; $i < $ar->row; ++$i) { |
||
1020 | for ($j = 0; $j < $ar->col; ++$j) { |
||
1021 | $ar->data[$i * $ar->col + $j] = $this->data[$i * $this->col - $cols + $j]; |
||
1022 | } |
||
1023 | } |
||
1024 | return $ar; |
||
1025 | } |
||
1026 | |||
1027 | /** |
||
1028 | * Return the index of the maximum element in every row of the matrix. |
||
1029 | * @return \Np\vector int |
||
1030 | */ |
||
1031 | public function argMax(): vector { |
||
1032 | $v = vector::factory($this->row, vector::INT); |
||
1033 | for ($i = 0; $i < $this->row; ++$i) { |
||
1034 | $v->data[$i] = blas::max($this->rowAsVector($i)); |
||
1035 | } |
||
1036 | return $v; |
||
1037 | } |
||
1038 | |||
1039 | /** |
||
1040 | * Return the index of the minimum element in every row of the matrix. |
||
1041 | * @return \Np\vector int |
||
1042 | */ |
||
1043 | public function argMin(): vector { |
||
1044 | $v = vector::factory($this->row, vector::INT); |
||
1045 | for ($i = 0; $i < $this->row; ++$i) { |
||
1046 | $v->data[$i] = blas::min($this->rowAsVector($i)); |
||
1047 | } |
||
1048 | |||
1049 | return $v; |
||
1050 | } |
||
1051 | |||
1052 | /** |
||
1053 | * Set given data in matrix |
||
1054 | * @param int|float|array $data |
||
1055 | * @param bool $dignoal |
||
1056 | * @return void |
||
1057 | */ |
||
1058 | public function setData(int|float|array $data, bool $dignoal = false): void { |
||
1059 | if ($dignoal == false) { |
||
1060 | if (is_array($data) && is_array($data[0])) { |
||
1061 | $f = $this->flattenArray($data); |
||
1062 | foreach ($f as $k => $v) { |
||
1063 | $this->data[$k] = $v; |
||
1064 | } |
||
1065 | } elseif (is_numeric($data)) { |
||
1066 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1067 | $this->data[$i] = $data; |
||
1068 | } |
||
1069 | } |
||
1070 | } elseif (is_numeric($data) || is_array($data) && !is_array($data[0])) { |
||
1071 | for ($i = 0; $i < $this->row; ++$i) { |
||
1072 | $this->data[$i * $this->col * $i] = $data; |
||
1073 | } |
||
1074 | } |
||
1075 | } |
||
1076 | |||
1077 | /** |
||
1078 | * get the matrix data type |
||
1079 | * @return type |
||
1080 | */ |
||
1081 | public function getDtype() { |
||
1083 | } |
||
1084 | |||
1085 | /** |
||
1086 | * get the shape of matrix |
||
1087 | * @return object |
||
1088 | */ |
||
1089 | public function getShape(): object { |
||
1090 | return (object) ['m' => $this->row, 'n' => $this->col]; |
||
1091 | } |
||
1092 | |||
1093 | /** |
||
1094 | * get the number of elements in the matrix. |
||
1095 | * @return int |
||
1096 | */ |
||
1097 | public function getSize(): int { |
||
1098 | return $this->ndim; |
||
1099 | } |
||
1100 | |||
1101 | /** |
||
1102 | * is matrix squred |
||
1103 | * @return bool |
||
1104 | */ |
||
1105 | public function isSquare(): bool { |
||
1106 | if ($this->row === $this->col) { |
||
1107 | return true; |
||
1108 | } |
||
1109 | return false; |
||
1110 | } |
||
1111 | |||
1112 | /** |
||
1113 | * Return a row as vector from the matrix. |
||
1114 | * @param int $index |
||
1115 | * @return \Np\vector |
||
1116 | */ |
||
1117 | public function rowAsVector(int $index): vector { |
||
1118 | $vr = vector::factory($this->col, $this->dtype); |
||
1119 | for ($j = 0; $j < $this->col; ++$j) { |
||
1120 | $vr->data[$j] = $this->data[$index * $this->col + $j]; |
||
1121 | } |
||
1122 | return $vr; |
||
1123 | } |
||
1124 | |||
1125 | /** |
||
1126 | * Return a col as vector from the matrix. |
||
1127 | * @param int $index |
||
1128 | * @return \Np\vector |
||
1129 | */ |
||
1130 | public function colAsVector(int $index): vector { |
||
1131 | $vr = vector::factory($this->row, $this->dtype); |
||
1132 | for ($i = 0; $i < $this->row; ++$i) { |
||
1133 | $vr->data[$i] = $this->data[$i * $this->row + $index]; |
||
1134 | } |
||
1135 | return $vr; |
||
1136 | } |
||
1137 | |||
1138 | /** |
||
1139 | * Return the diagonal elements of a square matrix as a vector. |
||
1140 | * @return \Np\vector |
||
1141 | */ |
||
1142 | public function diagonalAsVector(): vector { |
||
1143 | if (!$this->isSquare()) { |
||
1144 | self::_err('Can not trace of a none square matrix'); |
||
1145 | } |
||
1146 | $vr = vector::factory($this->row, $this->dtype); |
||
1147 | for ($i = 0; $i < $this->row; ++$i) { |
||
1148 | $vr->data[$i] = $this->getDiagonalVal($i); |
||
1149 | } |
||
1150 | return $vr; |
||
1151 | } |
||
1152 | |||
1153 | /** |
||
1154 | * Flatten i.e unravel the matrix into a vector. |
||
1155 | * |
||
1156 | * @return \Np\vector |
||
1157 | */ |
||
1158 | public function asVector(): vector { |
||
1159 | $vr = vector::factory($this->ndim, $this->dtype); |
||
1160 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1161 | $vr->data[$i] = $this->data[$i]; |
||
1162 | } |
||
1163 | return $vr; |
||
1164 | } |
||
1165 | |||
1166 | /** |
||
1167 | * Return the elements of the matrix in a 2-d array. |
||
1168 | * @return array |
||
1169 | */ |
||
1170 | public function asArray(): array { |
||
1171 | $ar = array_fill(0, $this->row, array_fill(0, $this->col, null)); |
||
1172 | for ($i = 0; $i < $this->row; ++$i) { |
||
1173 | for ($j = 0; $j < $this->col; ++$j) { |
||
1174 | $ar[$i][$j] = $this->data[$i * $this->col + $j]; |
||
1175 | } |
||
1176 | } |
||
1177 | return $ar; |
||
1178 | } |
||
1179 | |||
1180 | /** |
||
1181 | * get a diagonal value from matrix |
||
1182 | * @param int $i |
||
1183 | * @return float |
||
1184 | */ |
||
1185 | public function getDiagonalVal(int $i) { |
||
1186 | if ($this->isSquare()) { |
||
1187 | return $this->data[$i * $this->row + $i]; |
||
1188 | } |
||
1189 | } |
||
1190 | |||
1191 | /** |
||
1192 | * |
||
1193 | * Compute the multiplicative inverse of the matrix. |
||
1194 | * @return matrix |
||
1195 | */ |
||
1196 | public function inverse(): matrix { |
||
1197 | if (!$this->isSquare()) { |
||
1198 | self::_err('Error::invalid Size of matrix!'); |
||
1199 | } |
||
1200 | $imat = $this->copyMatrix(); |
||
1201 | $ipiv = vector::factory($this->row, vector::INT); |
||
1202 | $lp = lapack::getrf($imat, $ipiv); |
||
1203 | if ($lp != 0) { |
||
1204 | return null; |
||
1205 | } |
||
1206 | $lp = lapack::getri($imat, $ipiv); |
||
1207 | if ($lp != 0) { |
||
1208 | return null; |
||
1209 | } |
||
1210 | unset($ipiv); |
||
1211 | unset($lp); |
||
1212 | return $imat; |
||
1213 | } |
||
1214 | |||
1215 | /** |
||
1216 | * Compute the (Moore-Penrose) pseudo inverse of the general matrix. |
||
1217 | * @return matrix|null |
||
1218 | */ |
||
1219 | public function pseudoInverse(): matrix|null { |
||
1220 | $k = min($this->row, $this->col); |
||
1221 | $s = vector::factory($k, $this->dtype); |
||
1222 | $u = self::factory($this->row, $this->row, $this->dtype); |
||
1223 | $vt = self::factory($this->col, $this->col, $this->dtype); |
||
1224 | $imat = $this->copyMatrix(); |
||
1225 | $lp = lapack::gesdd($imat, $s, $u, $vt); |
||
1226 | if ($lp != 0) { |
||
1227 | return null; |
||
1228 | } |
||
1229 | for ($i = 0; $i < $k; ++$i) { |
||
1230 | blas::scale(1.0 / $s->data[$i], $vt->rowAsVector($i)); |
||
1231 | } |
||
1232 | unset($imat); |
||
1233 | unset($k); |
||
1234 | unset($lp); |
||
1235 | unset($s); |
||
1236 | $mr = self::factory($this->col, $this->row, $this->dtype); |
||
1237 | blas::gemm($vt, $u, $mr); |
||
1238 | unset($u); |
||
1239 | unset($vt); |
||
1240 | return $mr; |
||
1241 | } |
||
1242 | |||
1243 | /** |
||
1244 | * Compute the singular value decomposition of a matrix and |
||
1245 | * return an object of the singular values and unitary matrices |
||
1246 | * |
||
1247 | * @return object (u,s,v) |
||
1248 | */ |
||
1249 | public function svd(): svd { |
||
1250 | return svd::factory($this); |
||
1251 | } |
||
1252 | |||
1253 | /** |
||
1254 | * Compute the eigen decomposition of a general matrix. |
||
1255 | * return the eigenvalues and eigenvectors as object |
||
1256 | * |
||
1257 | * @param bool $symmetric |
||
1258 | * @return eigen |
||
1259 | */ |
||
1260 | public function eign(bool $symmetric = false): eigen { |
||
1261 | return eigen::factory($this, $symmetric); |
||
1262 | } |
||
1263 | |||
1264 | /** |
||
1265 | * |
||
1266 | * Compute the LU factorization of matrix. |
||
1267 | * return lower, upper, and permutation matrices as object. |
||
1268 | * |
||
1269 | * @return lu |
||
1270 | */ |
||
1271 | public function lu(): lu { |
||
1272 | return lu::factory($this); |
||
1273 | } |
||
1274 | |||
1275 | /** |
||
1276 | * Return the L1 norm of the matrix. |
||
1277 | * @return float |
||
1278 | */ |
||
1279 | public function normL1(): float { |
||
1280 | return lapack::lange('l', $this); |
||
1281 | } |
||
1282 | |||
1283 | /** |
||
1284 | * Return the L2 norm of the matrix. |
||
1285 | * @return float |
||
1286 | */ |
||
1287 | public function normL2(): float { |
||
1288 | return lapack::lange('f', $this); |
||
1289 | } |
||
1290 | |||
1291 | /** |
||
1292 | * Return the L1 norm of the matrix. |
||
1293 | * @return float |
||
1294 | */ |
||
1295 | public function normINF(): float { |
||
1296 | return lapack::lange('i', $this); |
||
1297 | } |
||
1298 | |||
1299 | /** |
||
1300 | * Return the Frobenius norm of the matrix. |
||
1301 | * @return float |
||
1302 | */ |
||
1303 | public function normFrob(): float { |
||
1304 | return $this->normL2(); |
||
1305 | } |
||
1306 | |||
1307 | /** |
||
1308 | * Run a function over all of the elements in the matrix. |
||
1309 | * @param callable $func |
||
1310 | * @return \Np\matrix |
||
1311 | */ |
||
1312 | public function map(callable $func): matrix { |
||
1313 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1314 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1315 | $ar->data[$i] = $func($this->data[$i]); |
||
1316 | } |
||
1317 | return $ar; |
||
1318 | } |
||
1319 | |||
1320 | public function abs(): matrix { |
||
1321 | return $this->map('abs'); |
||
1322 | } |
||
1323 | |||
1324 | public function sqrt(): matrix { |
||
1325 | return $this->map('sqrt'); |
||
1326 | } |
||
1327 | |||
1328 | public function exp(): matrix { |
||
1329 | return $this->map('exp'); |
||
1330 | } |
||
1331 | |||
1332 | public function exp1(): matrix { |
||
1333 | return $this->map('exp1'); |
||
1334 | } |
||
1335 | |||
1336 | public function log(float $b = M_E): matrix { |
||
1337 | $ar = $this->copyMatrix(); |
||
1338 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
1339 | log($ar->data[$i], $b); |
||
1340 | } |
||
1341 | return $ar; |
||
1342 | } |
||
1343 | |||
1344 | public function log1p(): matrix { |
||
1345 | return $this->map('log1p'); |
||
1346 | } |
||
1347 | |||
1348 | public function sin(): matrix { |
||
1349 | return $this->map('sin'); |
||
1350 | } |
||
1351 | |||
1352 | public function asin(): matrix { |
||
1353 | return $this->map('asin'); |
||
1354 | } |
||
1355 | |||
1356 | public function cos(): matrix { |
||
1357 | return $this->map('cos'); |
||
1358 | } |
||
1359 | |||
1360 | public function acos(): matrix { |
||
1361 | return $this->map('acos'); |
||
1362 | } |
||
1363 | |||
1364 | public function tan(): matrix { |
||
1365 | return $this->map('tan'); |
||
1366 | } |
||
1367 | |||
1368 | public function atan(): matrix { |
||
1369 | return $this->map('atan'); |
||
1370 | } |
||
1371 | |||
1372 | public function radToDeg(): matrix { |
||
1373 | return $this->map('rad2deg'); |
||
1374 | } |
||
1375 | |||
1376 | public function degToRad(): matrix { |
||
1377 | return $this->map('deg2rad'); |
||
1378 | } |
||
1379 | |||
1380 | public function floor(): matrix { |
||
1381 | return $this->map('floor'); |
||
1382 | } |
||
1383 | |||
1384 | public function ceil(): matrix { |
||
1385 | return $this->map('ceil'); |
||
1386 | } |
||
1387 | |||
1388 | /** |
||
1389 | * Compute the means of each row and return them in a vector. |
||
1390 | * |
||
1391 | * @return vector |
||
1392 | */ |
||
1393 | public function mean(): vector { |
||
1394 | return $this->sumRows()->divide($this->col); |
||
1395 | } |
||
1396 | |||
1397 | /** |
||
1398 | * Compute the row variance of the matrix. |
||
1399 | * |
||
1400 | * @param vector|null $mean |
||
1401 | * @return vector |
||
1402 | */ |
||
1403 | public function variance(vector|null $mean = null): vector { |
||
1404 | if (isset($mean)) { |
||
1405 | if (!$mean instanceof vector) { |
||
1406 | self::_invalidArgument('mean must be a vector!'); |
||
1407 | } |
||
1408 | if ($this->row !== $mean->col) { |
||
1409 | self::_err('Err:: given mean vector dimensionality mismatched!'); |
||
1410 | } |
||
1411 | } else { |
||
1412 | $mean = $this->mean(); |
||
1413 | } |
||
1414 | return $this->subtractColumnVector($mean)->square() |
||
1415 | ->sumRows()->divide($this->row); |
||
1416 | } |
||
1417 | |||
1418 | /** |
||
1419 | * Return the median vector of this matrix. |
||
1420 | * @return vector |
||
1421 | */ |
||
1422 | public function median(): vector { |
||
1423 | $mid = intdiv($this->col, 2); |
||
1424 | $odd = $this->col % 2 === 1; |
||
1425 | $vr = vector::factory($this->row, $this->dtype); |
||
1426 | for ($i = 0; $i < $this->row; ++$i) { |
||
1427 | $a = $this->rowAsVector($i)->sort(); |
||
1428 | if ($odd) { |
||
1429 | $median = $a->data[$mid]; |
||
1430 | } else { |
||
1431 | $median = ($a->data[$mid - 1] + $a->data[$mid]) / 2.0; |
||
1432 | } |
||
1433 | $vr->data[$i] = $median; |
||
1434 | } |
||
1435 | unset($a); |
||
1436 | return $vr; |
||
1437 | } |
||
1438 | |||
1439 | /** |
||
1440 | * Compute the covariance matrix. |
||
1441 | * |
||
1442 | * @param vector|null $mean |
||
1443 | * @return matrix |
||
1444 | */ |
||
1445 | public function covariance(vector|null $mean = null): matrix { |
||
1446 | if (isset($mean)) { |
||
1447 | if ($mean->col !== $this->row) { |
||
1448 | self::_err('Err:: given mean vector dimensionality mismatched!'); |
||
1449 | } |
||
1450 | } else { |
||
1451 | $mean = $this->mean(); |
||
1452 | } |
||
1453 | |||
1454 | $b = $this->subtractColumnVector($mean); |
||
1455 | |||
1456 | return $b->dot($b->transpose()) |
||
1457 | ->divideScalar($this->row); |
||
1458 | } |
||
1459 | |||
1460 | /** |
||
1461 | * Clip the elements in the matrix to be between given minimum and maximum |
||
1462 | * and return a new matrix. |
||
1463 | * |
||
1464 | * @param float $min |
||
1465 | * @param float $max |
||
1466 | * @return matrix |
||
1467 | */ |
||
1468 | public function clip(float $min, float $max): matrix { |
||
1469 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1470 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1471 | if ($this->data[$i] > $max) { |
||
1472 | $ar->data[$i] = $max; |
||
1473 | continue; |
||
1474 | } |
||
1475 | if ($this->data[$i] < $min) { |
||
1476 | $ar->data[$i] = $min; |
||
1477 | continue; |
||
1478 | } |
||
1479 | $ar->data[$i] = $this->data[$i]; |
||
1480 | } |
||
1481 | return $ar; |
||
1482 | } |
||
1483 | |||
1484 | /** |
||
1485 | * Clip the matrix to be lower bounded by a given minimum. |
||
1486 | * @param float $min |
||
1487 | * @return matrix |
||
1488 | */ |
||
1489 | public function clipLower(float $min): matrix { |
||
1490 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1491 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1492 | if ($this->data[$i] < $min) { |
||
1493 | $ar->data[$i] = $min; |
||
1494 | continue; |
||
1495 | } |
||
1496 | $ar->data[$i] = $this->data[$i]; |
||
1497 | } |
||
1498 | return $ar; |
||
1499 | } |
||
1500 | |||
1501 | /** |
||
1502 | * Clip the matrix to be upper bounded by a given maximum. |
||
1503 | * |
||
1504 | * @param float $max |
||
1505 | * @return matrix |
||
1506 | */ |
||
1507 | public function clipUpper(float $max): matrix { |
||
1508 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1509 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1510 | if ($this->data[$i] > $max) { |
||
1511 | $ar->data[$i] = $max; |
||
1512 | continue; |
||
1513 | } |
||
1514 | $ar->data[$i] = $this->data[$i]; |
||
1515 | } |
||
1516 | return $ar; |
||
1517 | } |
||
1518 | |||
1519 | /** |
||
1520 | * Square of matrix |
||
1521 | * @return matrix |
||
1522 | */ |
||
1523 | public function square(): matrix { |
||
1524 | return $this->multiplyMatrix($this); |
||
1525 | } |
||
1526 | |||
1527 | /** |
||
1528 | * |
||
1529 | * @param int|float|matrix|vector $d |
||
1530 | * @return matrix |
||
1531 | */ |
||
1532 | public function equal(int|float|matrix|vector $d): matrix { |
||
1533 | if ($d instanceof self) { |
||
1534 | return $this->equalMatrix($d); |
||
1535 | } elseif ($d instanceof vector) { |
||
1536 | return $this->equalVector($d); |
||
1537 | } else { |
||
1538 | return $this->equalScalar($d); |
||
1539 | } |
||
1540 | } |
||
1541 | |||
1542 | protected function equalMatrix(matrix $m): matrix { |
||
1543 | if ($this->checkShape($this, $m) && $this->checkDtype($this, $m)) { |
||
1544 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1545 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1546 | $ar->data[$i] = $this->data[$i] == $m->data[$i] ? 1 : 0; |
||
1547 | } |
||
1548 | return $ar; |
||
1549 | } |
||
1550 | } |
||
1551 | |||
1552 | protected function equalVector(vector $v): matrix { |
||
1553 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this, $v)) { |
||
1554 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1555 | for ($i = 0; $i < $this->row; ++$i) { |
||
1556 | for ($j = 0; $j < $this->col; ++$j) { |
||
1557 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] == $v->data[$j] ? 1 : 0; |
||
1558 | } |
||
1559 | } |
||
1560 | return $ar; |
||
1561 | } |
||
1562 | } |
||
1563 | |||
1564 | protected function equalScalar(int|float $s): matrix { |
||
1565 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1566 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1567 | $ar->data[$i] = $this->data[$i] == $s ? 1 : 0; |
||
1568 | } |
||
1569 | return $ar; |
||
1570 | } |
||
1571 | |||
1572 | /** |
||
1573 | * |
||
1574 | * @param int|float|matrix|vector $d |
||
1575 | * @return matrix |
||
1576 | */ |
||
1577 | public function greater(int|float|matrix|vector $d): matrix { |
||
1584 | } |
||
1585 | } |
||
1586 | |||
1587 | protected function greaterMatrix(matrix $m): matrix { |
||
1588 | if ($this->checkShape($this, $m) && $this->checkDtype($this,$m)) { |
||
1589 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1590 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1591 | $ar->data[$i] = $this->data[$i] > $m->data[$i] ? 1 : 0; |
||
1592 | } |
||
1593 | return $ar; |
||
1594 | } |
||
1595 | } |
||
1596 | |||
1597 | protected function greaterVector(vector $v): matrix { |
||
1598 | if ($this->checkDimensions($v, $this) && $this->checkDtype($this,$v)) { |
||
1599 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1600 | for ($i = 0; $i < $this->row; ++$i) { |
||
1601 | for ($j = 0; $j < $this->col; ++$j) { |
||
1602 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] > $v->data[$j] ? 1 : 0; |
||
1603 | } |
||
1604 | } |
||
1605 | return $ar; |
||
1606 | } |
||
1607 | } |
||
1608 | |||
1609 | protected function greaterScalar(int|float $s): matrix { |
||
1610 | $ar = self::factory($this->row, $this->col, $this->dtype); |
||
1611 | for ($i = 0; $i < $this->ndim; ++$i) { |
||
1612 | $ar->data[$i] = $this->data[$i] > $s ? 1 : 0; |
||
1613 | } |
||
1614 | return $ar; |
||
1615 | } |
||
1616 | |||
1617 | /** |
||
1618 | * |
||
1619 | * @param int|float|matrix $m |
||
1620 | * @return matrix |
||
1621 | */ |
||
1622 | public function less(int|float|matrix $m): matrix { |
||
1636 | } |
||
1637 | } |
||
1638 | |||
1639 | /** |
||
1640 | * Is the matrix symmetric i.e. is it equal to its own transpose? |
||
1641 | * |
||
1642 | * @return bool |
||
1643 | */ |
||
1644 | public function isSymmetric(): bool { |
||
1645 | if (!$this->isSquare()) { |
||
1646 | return false; |
||
1647 | } |
||
1648 | $ar = $this->transpose(); |
||
1649 | for ($i = 0; $i < $ar->ndim; ++$i) { |
||
1650 | if ($ar->data[$i] != $this->data[$i]) { |
||
1651 | unset($ar); |
||
1652 | return false; |
||
1653 | } |
||
1654 | } |
||
1655 | unset($ar); |
||
1656 | return true; |
||
1657 | } |
||
1658 | |||
1659 | /** |
||
1660 | * Reshape current matrix. |
||
1661 | * @param int $row |
||
1662 | * @param int $col |
||
1663 | * @return matrix |
||
1664 | */ |
||
1665 | public function reshape(int $row, int $col):matrix { |
||
1666 | if($this->ndim != $row * $col) { |
||
1667 | self::_dimensionaMisMatchErr('given dimenssion is not valid for current bufferData'); |
||
1668 | } |
||
1669 | $this->row = $row; |
||
1670 | $this->col = $col; |
||
1671 | return $this; |
||
1672 | } |
||
1673 | |||
1674 | /** |
||
1675 | * print the matrix in consol |
||
1676 | */ |
||
1677 | public function printMatrix() { |
||
1678 | echo __CLASS__ . PHP_EOL; |
||
1679 | for ($i = 0; $i < $this->row; ++$i) { |
||
1680 | for ($j = 0; $j < $this->col; ++$j) { |
||
1681 | printf('%lf ', $this->data[$i * $this->col + $j]); |
||
1682 | } |
||
1683 | echo PHP_EOL; |
||
1684 | } |
||
1685 | } |
||
1686 | |||
1687 | public function __toString() { |
||
1689 | } |
||
1690 | |||
1691 | private function flattenArray(array $ar) { |
||
1692 | if (is_array($ar) && is_array($ar[0])) { |
||
1693 | $a = []; |
||
1694 | foreach ($ar as $y => $value) { |
||
1695 | foreach ($value as $k => $v) { |
||
1696 | $a[] = $v; |
||
1697 | } |
||
1698 | } |
||
1699 | return $a; |
||
1700 | } |
||
1701 | } |
||
1702 | |||
1703 | /** |
||
1704 | * |
||
1705 | * @param int $row |
||
1706 | * @param int $col |
||
1707 | * @param int $dtype |
||
1708 | * @return $this |
||
1709 | */ |
||
1710 | protected function __construct(public int $row, public int $col, int $dtype = self::Float) { |
||
1716 | } |
||
1717 | } |
||
1718 |