| Total Complexity | 284 | 
| Total Lines | 1391 | 
| Duplicated Lines | 0 % | 
| Changes | 4 | ||
| Bugs | 3 | Features | 0 | 
Complex classes like matrix often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use matrix, and based on these observations, apply Extract Interface, too.
| 1 | <?php  | 
            ||
| 20 | class matrix extends nd { | 
            ||
| 21 | |||
| 22 | use ops,linAlgb\linAlg;  | 
            ||
| 23 | |||
| 24 | /**  | 
            ||
| 25 | * create empty 2d matrix for given data type  | 
            ||
| 26 | * @param int $row num of rows  | 
            ||
| 27 | * @param int $col num of cols  | 
            ||
| 28 | * @return \Np\matrix  | 
            ||
| 29 | */  | 
            ||
| 30 |     public static function factory(int $row, int $col): matrix { | 
            ||
| 31 | return new self($row, $col);  | 
            ||
| 32 | }  | 
            ||
| 33 | |||
| 34 | /**  | 
            ||
| 35 | * create 2d matrix using php array  | 
            ||
| 36 | * @param array $data  | 
            ||
| 37 | * @return \Np\matrix  | 
            ||
| 38 | */  | 
            ||
| 39 |     public static function ar(array $data): matrix { | 
            ||
| 40 |         if (is_array($data) && is_array($data[0])) { | 
            ||
| 41 | $ar = self::factory(count($data), count($data[0]));  | 
            ||
| 42 | $ar->setData($data);  | 
            ||
| 43 | unset($data);  | 
            ||
| 44 | return $ar;  | 
            ||
| 45 |         } else { | 
            ||
| 46 |             self::_err('given array is not rank-2 or given is not an array'); | 
            ||
| 47 | }  | 
            ||
| 48 | }  | 
            ||
| 49 | |||
| 50 | /**  | 
            ||
| 51 | * create one like 2d matrix  | 
            ||
| 52 | * @param int $row  | 
            ||
| 53 | * @param int $col  | 
            ||
| 54 | * @return \Np\matrix  | 
            ||
| 55 | */  | 
            ||
| 56 |     public static function ones(int $row, int $col): matrix { | 
            ||
| 57 | $ar = self::factory($row, $col);  | 
            ||
| 58 |         for ($i = 0; $i < $ar->ndim; ++$i) { | 
            ||
| 59 | $ar->data[$i] = 1;  | 
            ||
| 60 | }  | 
            ||
| 61 | return $ar;  | 
            ||
| 62 | }  | 
            ||
| 63 | |||
| 64 | /**  | 
            ||
| 65 | * Create Matrix with random values  | 
            ||
| 66 | * @param int $row  | 
            ||
| 67 | * @param int $col  | 
            ||
| 68 | * @return \Np\matrix  | 
            ||
| 69 | */  | 
            ||
| 70 |     public static function randn(int $row, int $col): matrix { | 
            ||
| 71 | $ar = self::factory($row, $col);  | 
            ||
| 72 | $max = getrandmax();  | 
            ||
| 73 |         for ($i = 0; $i < $ar->ndim; ++$i) { | 
            ||
| 74 | $ar->data[$i] = rand() / $max;  | 
            ||
| 75 | }  | 
            ||
| 76 | return $ar;  | 
            ||
| 77 | }  | 
            ||
| 78 | |||
| 79 | /**  | 
            ||
| 80 | * Return 2d matrix with uniform values  | 
            ||
| 81 | * @param int $row  | 
            ||
| 82 | * @param int $col  | 
            ||
| 83 | * @return \Np\matrix  | 
            ||
| 84 | */  | 
            ||
| 85 |     public static function uniform(int $row, int $col): matrix { | 
            ||
| 86 | $ar = self::factory($row, $col);  | 
            ||
| 87 | $max = getrandmax();  | 
            ||
| 88 |         for ($i = 0; $i < $ar->ndim; ++$i) { | 
            ||
| 89 | $ar->data[$i] = rand(-$max, $max) / $max;  | 
            ||
| 90 | }  | 
            ||
| 91 | return $ar;  | 
            ||
| 92 | }  | 
            ||
| 93 | |||
| 94 | /**  | 
            ||
| 95 | * Return a zero matrix with the given dimensions.  | 
            ||
| 96 | * @param int $row  | 
            ||
| 97 | * @param int $col  | 
            ||
| 98 | * @return \Np\matrix  | 
            ||
| 99 | */  | 
            ||
| 100 |     public static function zeros(int $row, int $col): matrix { | 
            ||
| 101 | $ar = self::factory($row, $col);  | 
            ||
| 102 |         for ($i = 0; $i < $ar->ndim; ++$i) { | 
            ||
| 103 | $ar->data[$i] = 0.0;  | 
            ||
| 104 | }  | 
            ||
| 105 | return $ar;  | 
            ||
| 106 | }  | 
            ||
| 107 | |||
| 108 | /**  | 
            ||
| 109 | * create a null like 2d matrix  | 
            ||
| 110 | * @param int $row  | 
            ||
| 111 | * @param int $col  | 
            ||
| 112 | * @return \Np\matrix  | 
            ||
| 113 | */  | 
            ||
| 114 |     public static function null(int $row, int $col): matrix { | 
            ||
| 115 | $ar = self::factory($row, $col);  | 
            ||
| 116 |         for ($i = 0; $i < $ar->ndim; ++$i) { | 
            ||
| 117 | $ar->data[$i] = null;  | 
            ||
| 118 | }  | 
            ||
| 119 | return $ar;  | 
            ||
| 120 | }  | 
            ||
| 121 | |||
| 122 | /**  | 
            ||
| 123 | * create a 2d matrix with given scalar value  | 
            ||
| 124 | * @param int $row  | 
            ||
| 125 | * @param int $col  | 
            ||
| 126 | * @param int|float $val  | 
            ||
| 127 | * @return \Np\matrix  | 
            ||
| 128 | */  | 
            ||
| 129 |     public static function full(int $row, int $col, int|float $val): matrix { | 
            ||
| 130 | $ar = self::factory($row, $col);  | 
            ||
| 131 |         for ($i = 0; $i < $ar->ndim; ++$i) { | 
            ||
| 132 | $ar->data[$i] = $val;  | 
            ||
| 133 | }  | 
            ||
| 134 | return $ar;  | 
            ||
| 135 | }  | 
            ||
| 136 | |||
| 137 | /**  | 
            ||
| 138 | * create a diagonal 2d matrix with given 1d array;  | 
            ||
| 139 | * @param array $elements  | 
            ||
| 140 | * @return \Np\matrix  | 
            ||
| 141 | */  | 
            ||
| 142 |     public static function diagonal(array $elements): matrix { | 
            ||
| 143 | $n = count($elements);  | 
            ||
| 144 | $ar = self::factory($n, $n);  | 
            ||
| 145 |         for ($i = 0; $i < $n; ++$i) { | 
            ||
| 146 |             $ar->data[$i * $n + $i] = $elements[$i]; #for ($j = 0; $j < $n; ++$j) {$i === $j ? $elements[$i] : 0;#}  | 
            ||
| 147 | }  | 
            ||
| 148 | return $ar;  | 
            ||
| 149 | }  | 
            ||
| 150 | |||
| 151 | /**  | 
            ||
| 152 | * Generate a m x n matrix with elements from a Poisson distribution.  | 
            ||
| 153 | * @param int $row  | 
            ||
| 154 | * @param int $col  | 
            ||
| 155 | * @param float $lambda  | 
            ||
| 156 | * @return \Np\matrix  | 
            ||
| 157 | */  | 
            ||
| 158 |     public static function poisson(int $row, int $col, float $lambda = 1.0): matrix { | 
            ||
| 159 | $ar = self::factory($row, $col);  | 
            ||
| 160 | $max = getrandmax();  | 
            ||
| 161 | $l = exp(-$lambda);  | 
            ||
| 162 |         for ($i = 0; $i < $row; ++$i) { | 
            ||
| 163 |             for ($j = 0; $j < $col; ++$j) { | 
            ||
| 164 | $k = 0;  | 
            ||
| 165 | $p = 1.0;  | 
            ||
| 166 |                 while ($p > $l) { | 
            ||
| 167 | ++$k;  | 
            ||
| 168 | $p = $p * rand() / $max;  | 
            ||
| 169 | }  | 
            ||
| 170 | $ar->data[$i * $col + $j] = $k - 1;  | 
            ||
| 171 | }  | 
            ||
| 172 | }  | 
            ||
| 173 | return $ar;  | 
            ||
| 174 | }  | 
            ||
| 175 | |||
| 176 | /**  | 
            ||
| 177 | * Return a standard normally distributed random matrix i.e values  | 
            ||
| 178 | * between -1 and 1.  | 
            ||
| 179 | * @param int $row  | 
            ||
| 180 | * @param int $col  | 
            ||
| 181 | * @return \Np\matrix  | 
            ||
| 182 | */  | 
            ||
| 183 |     public static function gaussian(int $row, int $col): matrix { | 
            ||
| 184 | $max = getrandmax();  | 
            ||
| 185 | $a = $extras = [];  | 
            ||
| 186 | |||
| 187 |         while (count($a) < $row) { | 
            ||
| 188 | $rowA = [];  | 
            ||
| 189 | |||
| 190 |             if (!empty($extras)) { | 
            ||
| 191 | $rowA[] = array_pop($extras);  | 
            ||
| 192 | }  | 
            ||
| 193 | |||
| 194 |             while (count($rowA) < $col) { | 
            ||
| 195 | $r = sqrt(-2.0 * log(rand() / $max));  | 
            ||
| 196 | |||
| 197 | $phi = rand() / $max * self::TWO_PI;  | 
            ||
| 198 | |||
| 199 | $rowA[] = $r * sin($phi);  | 
            ||
| 200 | $rowA[] = $r * cos($phi);  | 
            ||
| 201 | }  | 
            ||
| 202 | |||
| 203 |             if (count($rowA) > $col) { | 
            ||
| 204 | $extras[] = array_pop($rowA);  | 
            ||
| 205 | }  | 
            ||
| 206 | |||
| 207 | $a[] = $rowA;  | 
            ||
| 208 | }  | 
            ||
| 209 | |||
| 210 | return self::ar($a);  | 
            ||
| 211 | }  | 
            ||
| 212 | |||
| 213 | /**  | 
            ||
| 214 | * create an identity matrix with the given dimensions.  | 
            ||
| 215 | * @param int $n  | 
            ||
| 216 | * @return matrix  | 
            ||
| 217 | * @throws \InvalidArgumentException  | 
            ||
| 218 | */  | 
            ||
| 219 |     public static function identity(int $n): matrix { | 
            ||
| 220 |         if ($n < 1) { | 
            ||
| 221 |             self::_dimensionaMisMatchErr('dimensionality must be greater than 0 on all axes.'); | 
            ||
| 222 | }  | 
            ||
| 223 | |||
| 224 | $ar = self::factory($n, $n);  | 
            ||
| 225 |         for ($i = 0; $i < $n; ++$i) { | 
            ||
| 226 |             for ($j = 0; $j < $n; ++$j) { | 
            ||
| 227 | $ar->data[$i * $n + $j] = $i === $j ? 1 : 0;  | 
            ||
| 228 | }  | 
            ||
| 229 | }  | 
            ||
| 230 | return $ar;  | 
            ||
| 231 | }  | 
            ||
| 232 | |||
| 233 | /**  | 
            ||
| 234 | * Return a row as vector from the matrix.  | 
            ||
| 235 | * @param int $index  | 
            ||
| 236 | * @return \Np\vector  | 
            ||
| 237 | */  | 
            ||
| 238 |     public function rowAsVector(int $index): vector { | 
            ||
| 239 | $vr = vector::factory($this->col);  | 
            ||
| 240 |         for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 241 | $vr->data[$j] = $this->data[$index * $this->col + $j];  | 
            ||
| 242 | }  | 
            ||
| 243 | return $vr;  | 
            ||
| 244 | }  | 
            ||
| 245 | |||
| 246 | /**  | 
            ||
| 247 | * Return a col as vector from the matrix.  | 
            ||
| 248 | * @param int $index  | 
            ||
| 249 | * @return \Np\vector  | 
            ||
| 250 | */  | 
            ||
| 251 |     public function colAsVector(int $index): vector { | 
            ||
| 252 | $vr = vector::factory($this->row);  | 
            ||
| 253 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 254 | $vr->data[$i] = $this->data[$i * $this->row + $index];  | 
            ||
| 255 | }  | 
            ||
| 256 | return $vr;  | 
            ||
| 257 | }  | 
            ||
| 258 | |||
| 259 | /**  | 
            ||
| 260 | * Return the diagonal elements of a square matrix as a vector.  | 
            ||
| 261 | * @return \Np\vector  | 
            ||
| 262 | */  | 
            ||
| 263 |     public function diagonalAsVector(): vector { | 
            ||
| 264 |         if ($this->isSquare()) { | 
            ||
| 265 | $vr = vector::factory($this->row);  | 
            ||
| 266 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 267 | $vr->data[$i] = $this->getDiagonalVal($i);  | 
            ||
| 268 | }  | 
            ||
| 269 | return $vr;  | 
            ||
| 270 | }  | 
            ||
| 271 |         self::_err('Can not trace of a none square matrix'); | 
            ||
| 272 | }  | 
            ||
| 273 | |||
| 274 | /**  | 
            ||
| 275 | * Flatten i.e unravel the matrix into a vector.  | 
            ||
| 276 | *  | 
            ||
| 277 | * @return \Np\vector  | 
            ||
| 278 | */  | 
            ||
| 279 |     public function asVector(): vector { | 
            ||
| 280 | $vr = vector::factory($this->ndim);  | 
            ||
| 281 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 282 | $vr->data[$i] = $this->data[$i];  | 
            ||
| 283 | }  | 
            ||
| 284 | return $vr;  | 
            ||
| 285 | }  | 
            ||
| 286 | |||
| 287 | /**  | 
            ||
| 288 | * 2D convolution between a matrix ma and kernel kb, with a given stride.  | 
            ||
| 289 | * @param \Np\matrix $m  | 
            ||
| 290 | * @param int $stride  | 
            ||
| 291 | * @return matrix  | 
            ||
| 292 | */  | 
            ||
| 293 |     public function convolve(matrix $m, int $stride = 1): matrix { | 
            ||
| 294 | return convolve::conv2D($this, $m, $stride);  | 
            ||
| 295 | }  | 
            ||
| 296 | |||
| 297 | /**  | 
            ||
| 298 | * Calculate the determinant of the matrix.  | 
            ||
| 299 | * @return float  | 
            ||
| 300 | */  | 
            ||
| 301 |     public function det(): float { | 
            ||
| 302 |         if (!$this->isSquare()) { | 
            ||
| 303 |             self::_err('determinant is undefined for a non square matrix'); | 
            ||
| 304 | }  | 
            ||
| 305 | $lu = $this->lu();  | 
            ||
| 306 | $nSwaps = $lu->p()->diagonalAsVector()->subtract($lu->p()->diagonalAsVector()->sum())->col - 1;  | 
            ||
| 307 | $detP = (-1) ** $nSwaps;  | 
            ||
| 308 | $detL = $lu->l()->diagonalAsVector()->product();  | 
            ||
| 309 | $detU = $lu->u()->diagonalAsVector()->product();  | 
            ||
| 310 | unset($lu);  | 
            ||
| 311 | return ($detP * $detL * $detU);  | 
            ||
| 312 | }  | 
            ||
| 313 | |||
| 314 | /**  | 
            ||
| 315 | * Return the trace of the matrix i.e the sum of all diagonal elements of a square matrix.  | 
            ||
| 316 | * @return float  | 
            ||
| 317 | */  | 
            ||
| 318 |     public function trace(): float { | 
            ||
| 319 |         if (!$this->isSquare()) { | 
            ||
| 320 |             self::_err('Error::matrix is not a squared can not Trace!'); | 
            ||
| 321 | }  | 
            ||
| 322 | $trace = 0.0;  | 
            ||
| 323 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 324 |             for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 325 |                 if ($i == $j) { | 
            ||
| 326 | $trace += $this->data[$i * $this->col + $i];  | 
            ||
| 327 | }  | 
            ||
| 328 | }  | 
            ||
| 329 | }  | 
            ||
| 330 | return $trace;  | 
            ||
| 331 | }  | 
            ||
| 332 | |||
| 333 | /**  | 
            ||
| 334 | * dignoalInterChange  | 
            ||
| 335 | */  | 
            ||
| 336 |     public function dignoalInterChange() { | 
            ||
| 337 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 338 |             for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 339 | $tmp = $this->data[$i * $this->col - $j];  | 
            ||
| 340 | $this->data[$i * $this->col - $j] = $tmp;  | 
            ||
| 341 | }  | 
            ||
| 342 | }  | 
            ||
| 343 | }  | 
            ||
| 344 | |||
| 345 | //---------------Arthmetic Opreations-----------------------------------  | 
            ||
| 346 | |||
| 347 | /**  | 
            ||
| 348 | * multiply this matrix with another matrix|scalar element-wise  | 
            ||
| 349 | * Matrix Scalar\Matrix multiplication  | 
            ||
| 350 | * @param int|float|matrix|vector $m  | 
            ||
| 351 | * @return matrix|vector  | 
            ||
| 352 | */  | 
            ||
| 353 |     public function multiply(int|float|matrix|vector $m): matrix|vector { | 
            ||
| 354 |         if ($m instanceof self) { | 
            ||
| 355 | return $this->multiplyMatrix($m);  | 
            ||
| 356 |         } else if ($m instanceof vector) { | 
            ||
| 357 | return $this->multiplyVector($m);  | 
            ||
| 358 |         } else { | 
            ||
| 359 | return $this->scale($m);  | 
            ||
| 360 | }  | 
            ||
| 361 | }  | 
            ||
| 362 | |||
| 363 | /**  | 
            ||
| 364 | *  | 
            ||
| 365 | * @param \Np\vector $v  | 
            ||
| 366 | * @return matrix  | 
            ||
| 367 | */  | 
            ||
| 368 |     protected function multiplyVector(vector $v): matrix { | 
            ||
| 369 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 370 | $ar = matrix::factory($this->row, $this->col);  | 
            ||
| 371 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 372 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 373 | $ar->data[$i * $this->col + $j] = $v->data[$j] * $this->data[$i * $this->col + $j];  | 
            ||
| 374 | }  | 
            ||
| 375 | }  | 
            ||
| 376 | return $ar;  | 
            ||
| 377 | }  | 
            ||
| 378 | }  | 
            ||
| 379 | |||
| 380 | /**  | 
            ||
| 381 | *  | 
            ||
| 382 | * @param \Np\matrix $m  | 
            ||
| 383 | * @return matrix  | 
            ||
| 384 | */  | 
            ||
| 385 |     protected function multiplyMatrix(matrix $m): matrix { | 
            ||
| 386 |         if ($this->checkShape($this, $m)) { | 
            ||
| 387 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 388 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 389 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 390 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] * $m->data[$i * $this->col + $j];  | 
            ||
| 391 | }  | 
            ||
| 392 | }  | 
            ||
| 393 | return $ar;  | 
            ||
| 394 | }  | 
            ||
| 395 | }  | 
            ||
| 396 | |||
| 397 | /**  | 
            ||
| 398 | * Sum of two matrix, vector or a scalar to current matrix  | 
            ||
| 399 | *  | 
            ||
| 400 | * @param int|float|matrix|vector $m  | 
            ||
| 401 | * @return matrix  | 
            ||
| 402 | */  | 
            ||
| 403 |     public function sum(int|float|matrix|vector $m): matrix { | 
            ||
| 404 |         if ($m instanceof self) { | 
            ||
| 405 | return $this->sumMatrix($m);  | 
            ||
| 406 |         } elseif ($m instanceof vector) { | 
            ||
| 407 | return $this->sumVector($m);  | 
            ||
| 408 |         } else { | 
            ||
| 409 | return $this->sumScalar($m);  | 
            ||
| 410 | }  | 
            ||
| 411 | }  | 
            ||
| 412 | |||
| 413 |     protected function sumScalar(int|float $s): matrix { | 
            ||
| 414 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 415 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 416 | $ar->data[$i] = $this->data[$i] + $s;  | 
            ||
| 417 | }  | 
            ||
| 418 | return $ar;  | 
            ||
| 419 | }  | 
            ||
| 420 | |||
| 421 |     protected function sumMatrix(matrix $m): matrix { | 
            ||
| 422 |         if ($this->checkShape($this, $m)) { | 
            ||
| 423 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 424 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 425 | $ar->data[$i] = $this->data[$i] + $m->data[$i];  | 
            ||
| 426 | }  | 
            ||
| 427 | return $ar;  | 
            ||
| 428 | }  | 
            ||
| 429 | }  | 
            ||
| 430 | |||
| 431 |     protected function sumVector(vector $v): matrix { | 
            ||
| 432 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 433 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 434 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 435 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 436 | $ar->data[$i * $this->col + $j] = $v->data[$j] + $this->data[$i * $this->col + $j];  | 
            ||
| 437 | }  | 
            ||
| 438 | }  | 
            ||
| 439 | return $ar;  | 
            ||
| 440 | }  | 
            ||
| 441 | }  | 
            ||
| 442 | |||
| 443 | /**  | 
            ||
| 444 | * Sum of Rows of matrix  | 
            ||
| 445 | * @return vector  | 
            ||
| 446 | */  | 
            ||
| 447 |     public function sumRows(): vector { | 
            ||
| 448 | $vr = vector::factory($this->row);  | 
            ||
| 449 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 450 | $sum = 0.0;  | 
            ||
| 451 |             for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 452 | $sum += $this->data[$i * $this->col + $j];  | 
            ||
| 453 | }  | 
            ||
| 454 | $vr->data[$i] = $sum;  | 
            ||
| 455 | }  | 
            ||
| 456 | return $vr;  | 
            ||
| 457 | }  | 
            ||
| 458 | |||
| 459 | /**  | 
            ||
| 460 | * subtract another matrix, vector or a scalar to this matrix  | 
            ||
| 461 | * @param int|float|matrix|vector $d matrix|$scalar to subtract this matrix  | 
            ||
| 462 | * @return \Np\matrix  | 
            ||
| 463 | */  | 
            ||
| 464 |     public function subtract(int|float|matrix|vector $d): matrix { | 
            ||
| 465 |         if ($d instanceof self) { | 
            ||
| 466 | return $this->subtractMatrix($d);  | 
            ||
| 467 |         } elseif ($d instanceof vector) { | 
            ||
| 468 | return $this->subtractVector($d);  | 
            ||
| 469 |         } else { | 
            ||
| 470 | return $this->subtractScalar($d);  | 
            ||
| 471 | }  | 
            ||
| 472 | }  | 
            ||
| 473 | |||
| 474 |     protected function subtractScalar(int|float $s): matrix { | 
            ||
| 475 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 476 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 477 | $ar->data[$i] = $this->data[$i] - $s;  | 
            ||
| 478 | }  | 
            ||
| 479 | return $ar;  | 
            ||
| 480 | }  | 
            ||
| 481 | |||
| 482 | /**  | 
            ||
| 483 | *  | 
            ||
| 484 | * @param matrix $m  | 
            ||
| 485 | * @return matrix  | 
            ||
| 486 | */  | 
            ||
| 487 |     protected function subtractMatrix(matrix $m): matrix { | 
            ||
| 488 |         if ($this->checkShape($this, $m)) { | 
            ||
| 489 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 490 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 491 | $ar->data[$i] = $this->data[$i] - $m->data[$i];  | 
            ||
| 492 | }  | 
            ||
| 493 | return $ar;  | 
            ||
| 494 | }  | 
            ||
| 495 | }  | 
            ||
| 496 | |||
| 497 | /**  | 
            ||
| 498 | *  | 
            ||
| 499 | * @param vector $v  | 
            ||
| 500 | * @return matrix  | 
            ||
| 501 | */  | 
            ||
| 502 |     protected function subtractVector(vector $v): matrix { | 
            ||
| 503 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 504 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 505 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 506 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 507 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] - $v->data[$j];  | 
            ||
| 508 | }  | 
            ||
| 509 | }  | 
            ||
| 510 | return $ar;  | 
            ||
| 511 | }  | 
            ||
| 512 | }  | 
            ||
| 513 | |||
| 514 | /**  | 
            ||
| 515 | *  | 
            ||
| 516 | * @param vector $v  | 
            ||
| 517 | * @return matrix  | 
            ||
| 518 | */  | 
            ||
| 519 |     public function subtractColumnVector(vector $v): matrix { | 
            ||
| 520 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 521 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 522 |             for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 523 |                 for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 524 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] - $v->data[$i];  | 
            ||
| 525 | }  | 
            ||
| 526 | }  | 
            ||
| 527 | return $ar;  | 
            ||
| 528 | }  | 
            ||
| 529 | }  | 
            ||
| 530 | |||
| 531 | /**  | 
            ||
| 532 | * Return the division of two elements, element-wise.  | 
            ||
| 533 | * @param int|float|matrix $d  | 
            ||
| 534 | * @return matrix  | 
            ||
| 535 | */  | 
            ||
| 536 |     public function divide(int|float|matrix|vector $d): matrix { | 
            ||
| 537 |         if ($d instanceof self) { | 
            ||
| 538 | return $this->divideMatrix($d);  | 
            ||
| 539 |         } elseif ($d instanceof vector) { | 
            ||
| 540 | return $this->divideVector($d);  | 
            ||
| 541 |         } else { | 
            ||
| 542 | return $this->divideScalar($d);  | 
            ||
| 543 | }  | 
            ||
| 544 | }  | 
            ||
| 545 | |||
| 546 |     protected function divideMatrix(matrix $m): matrix { | 
            ||
| 547 |         if ($this->checkShape($this, $m)) { | 
            ||
| 548 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 549 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 550 | $ar->data[$i] = $this->data[$i] / $m->data[$i];  | 
            ||
| 551 | }  | 
            ||
| 552 | return $ar;  | 
            ||
| 553 | }  | 
            ||
| 554 | }  | 
            ||
| 555 | |||
| 556 |     protected function divideVector(vector $v): matrix { | 
            ||
| 557 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 558 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 559 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 560 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 561 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] / $v->data[$j];  | 
            ||
| 562 | }  | 
            ||
| 563 | }  | 
            ||
| 564 | return $ar;  | 
            ||
| 565 | }  | 
            ||
| 566 | }  | 
            ||
| 567 | |||
| 568 |     protected function divideScalar(int|float $s): matrix { | 
            ||
| 569 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 570 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 571 | $ar->data[$i] = $this->data[$i] / $s;  | 
            ||
| 572 | }  | 
            ||
| 573 | return $ar;  | 
            ||
| 574 | }  | 
            ||
| 575 | |||
| 576 | /**  | 
            ||
| 577 | *  | 
            ||
| 578 | * Raise this matrix to the power of the element-wise entry in another matrix.  | 
            ||
| 579 | *  | 
            ||
| 580 | * @param int|float|matrix $m  | 
            ||
| 581 | * @return matrix  | 
            ||
| 582 | */  | 
            ||
| 583 |     public function pow(int|float|matrix|vector $d): matrix { | 
            ||
| 584 |         if ($d instanceof self) { | 
            ||
| 585 | return $this->powMatrix($d);  | 
            ||
| 586 |         } else if ($d instanceof vector) { | 
            ||
| 587 | return $this->powVector($d);  | 
            ||
| 588 |         } else { | 
            ||
| 589 | return $this->powScalar($d);  | 
            ||
| 590 | }  | 
            ||
| 591 | }  | 
            ||
| 592 | |||
| 593 |     protected function powMatrix(matrix $m): matrix { | 
            ||
| 594 |         if ($this->checkShape($this, $m)) { | 
            ||
| 595 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 596 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 597 | $ar->data[$i] = $this->data[$i] ** $m->data[$i];  | 
            ||
| 598 | }  | 
            ||
| 599 | return $ar;  | 
            ||
| 600 | }  | 
            ||
| 601 | }  | 
            ||
| 602 | |||
| 603 |     protected function powVector(vector $v): matrix { | 
            ||
| 604 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 605 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 606 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 607 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 608 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] ** $v->data[$j];  | 
            ||
| 609 | }  | 
            ||
| 610 | }  | 
            ||
| 611 | return $ar;  | 
            ||
| 612 | }  | 
            ||
| 613 | }  | 
            ||
| 614 | |||
| 615 |     protected function powScalar(int|float $s): matrix { | 
            ||
| 616 | $ar = $this->copy();  | 
            ||
| 617 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 618 | $ar->data[$i] **= $s;  | 
            ||
| 619 | }  | 
            ||
| 620 | return $ar;  | 
            ||
| 621 | }  | 
            ||
| 622 | |||
| 623 | /**  | 
            ||
| 624 | * Calculate the modulus i.e remainder of division between this matrix and another matrix.  | 
            ||
| 625 | * @param int|float|matrix|vector $d  | 
            ||
| 626 | * @return matrix  | 
            ||
| 627 | */  | 
            ||
| 628 |     public function mod(int|float|matrix|vector $d): matrix { | 
            ||
| 629 |         if ($d instanceof self) { | 
            ||
| 630 | $this->modMatrix($d);  | 
            ||
| 631 |         } else if ($d instanceof vector) { | 
            ||
| 632 | $this->modVector($d);  | 
            ||
| 633 |         } else { | 
            ||
| 634 | $this->modScalar($d);  | 
            ||
| 635 | }  | 
            ||
| 636 | }  | 
            ||
| 637 | |||
| 638 |     protected function modMatrix(matrix $m): matrix { | 
            ||
| 639 |         if ($this->checkShape($this, $m)) { | 
            ||
| 640 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 641 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 642 | $ar->data[$i] = $this->data[$i] % $m->data[$i];  | 
            ||
| 643 | }  | 
            ||
| 644 | return $ar;  | 
            ||
| 645 | }  | 
            ||
| 646 | }  | 
            ||
| 647 | |||
| 648 |     protected function modVector(vector $v): matrix { | 
            ||
| 649 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 650 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 651 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 652 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 653 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] % $v->data[$j];  | 
            ||
| 654 | }  | 
            ||
| 655 | }  | 
            ||
| 656 | return $ar;  | 
            ||
| 657 | }  | 
            ||
| 658 | }  | 
            ||
| 659 | |||
| 660 |     protected function modScalar(int|float $s): matrix { | 
            ||
| 661 | $ar = $this->copy();  | 
            ||
| 662 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 663 | $ar->data[$i] %= $s;  | 
            ||
| 664 | }  | 
            ||
| 665 | return $ar;  | 
            ||
| 666 | }  | 
            ||
| 667 | |||
| 668 | /**  | 
            ||
| 669 | * Return the element-wise reciprocal of the matrix.  | 
            ||
| 670 | *  | 
            ||
| 671 | * @return matrix  | 
            ||
| 672 | */  | 
            ||
| 673 |     public function reciprocal(): matrix { | 
            ||
| 674 | return self::ones($this->row, $this->col)->divideMatrix($this);  | 
            ||
| 675 | }  | 
            ||
| 676 | |||
| 677 | /**  | 
            ||
| 678 | * Transpose the matrix i.e row become cols and cols become rows.  | 
            ||
| 679 | * @return \Np\matrix  | 
            ||
| 680 | */  | 
            ||
| 681 |     public function transpose(): matrix { | 
            ||
| 682 | $ar = self::factory($this->col, $this->row);  | 
            ||
| 683 |         for ($i = 0; $i < $ar->row; ++$i) { | 
            ||
| 684 |             for ($j = 0; $j < $ar->col; ++$j) { | 
            ||
| 685 | $ar->data[$i * $ar->col + $j] = $this->data[$j * $this->col + $i];  | 
            ||
| 686 | }  | 
            ||
| 687 | }  | 
            ||
| 688 | return $ar;  | 
            ||
| 689 | }  | 
            ||
| 690 | |||
| 691 | /**  | 
            ||
| 692 | * swap specific values in matrix  | 
            ||
| 693 | * @param int $i1  | 
            ||
| 694 | * @param int $i2  | 
            ||
| 695 | */  | 
            ||
| 696 |     public function swapValue(int $i1, int $i2) { | 
            ||
| 697 | $tmp = $this->data[$i1];  | 
            ||
| 698 | $this->data[$i1] = $this->data[$i2];  | 
            ||
| 699 | $this->data[$i2] = $tmp;  | 
            ||
| 700 | }  | 
            ||
| 701 | |||
| 702 | /**  | 
            ||
| 703 | * swap specific rows in matrix  | 
            ||
| 704 | * @param int $r1  | 
            ||
| 705 | * @param int $r2  | 
            ||
| 706 | */  | 
            ||
| 707 |     public function swapRows(int $r1, int $r2) { | 
            ||
| 708 |         for ($i = 0; $i < $this->col; ++$i) { | 
            ||
| 709 | $tmp = $this->data[$r1 * $this->col + $i];  | 
            ||
| 710 | $this->data[$r1 * $this->col + $i] = $this->data[$r2 * $this->col + $i];  | 
            ||
| 711 | $this->data[$r2 * $this->col + $i] = $tmp;  | 
            ||
| 712 | }  | 
            ||
| 713 | }  | 
            ||
| 714 | |||
| 715 | /**  | 
            ||
| 716 | * swap specific cols in matrix  | 
            ||
| 717 | * @param int $c1  | 
            ||
| 718 | * @param int $c2  | 
            ||
| 719 | */  | 
            ||
| 720 |     public function swapCols(int $c1, int $c2) { | 
            ||
| 721 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 722 | $tmp = $this->data[$i * $this->row + $c1];  | 
            ||
| 723 | $this->data[$i * $this->row + $c1] = $this->data[$i * $this->row + $c2];  | 
            ||
| 724 | $this->data[$i * $this->row + $c2] = $tmp;  | 
            ||
| 725 | }  | 
            ||
| 726 | }  | 
            ||
| 727 | |||
| 728 | /**  | 
            ||
| 729 | *  | 
            ||
| 730 | * @param int|float $scalar  | 
            ||
| 731 | * @return matrix  | 
            ||
| 732 | */  | 
            ||
| 733 |     public function scale(int|float $scalar): matrix { | 
            ||
| 734 |         if ($scalar == 0) { | 
            ||
| 735 | return self::zeros($this->row, $this->col);  | 
            ||
| 736 | }  | 
            ||
| 737 | |||
| 738 | $ar = $this->copy();  | 
            ||
| 739 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 740 | $ar->data[$i] *= $scalar;  | 
            ||
| 741 | }  | 
            ||
| 742 | |||
| 743 | return $ar;  | 
            ||
| 744 | }  | 
            ||
| 745 | |||
| 746 | /**  | 
            ||
| 747 | * scale all the elements of a row  | 
            ||
| 748 | * @param int $row  | 
            ||
| 749 | * @param int|float $c  | 
            ||
| 750 | */  | 
            ||
| 751 |     public function scaleRow(int $row, int|float $c) { | 
            ||
| 752 |         for ($i = 0; $i < $this->col; ++$i) { | 
            ||
| 753 | $this->data[$row * $this->col + $i] *= $c;  | 
            ||
| 754 | }  | 
            ||
| 755 | }  | 
            ||
| 756 | |||
| 757 | /**  | 
            ||
| 758 | * scale all the elements of  | 
            ||
| 759 | * @param int $col  | 
            ||
| 760 | * @param int|float $c  | 
            ||
| 761 | */  | 
            ||
| 762 |     public function scaleCol(int $col, int|float $c) { | 
            ||
| 763 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 764 | $this->data[$i * $this->col + $col] *= $c;  | 
            ||
| 765 | }  | 
            ||
| 766 | }  | 
            ||
| 767 | |||
| 768 | /**  | 
            ||
| 769 | * Scale digonally  | 
            ||
| 770 | * @param int|float $c  | 
            ||
| 771 | * @param bool $lDig  | 
            ||
| 772 | */  | 
            ||
| 773 |     public function scaleDigonalCol(int|float $c, bool $lDig = true) { | 
            ||
| 774 |         if ($lDig) { | 
            ||
| 775 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 776 | $this->data[$i * $this->col + $i] *= $c;  | 
            ||
| 777 | }  | 
            ||
| 778 |         } else { | 
            ||
| 779 |             for ($i = $this->row; $i > 0; --$i) { | 
            ||
| 780 | $this->data[$i * $this->col - $i] *= $c;  | 
            ||
| 781 | }  | 
            ||
| 782 | }  | 
            ||
| 783 | }  | 
            ||
| 784 | |||
| 785 | /**  | 
            ||
| 786 | *  | 
            ||
| 787 | * @param int $r1  | 
            ||
| 788 | * @param int $r2  | 
            ||
| 789 | * @param float $c  | 
            ||
| 790 | */  | 
            ||
| 791 |     public function addScaleRow(int $r1, int $r2, float $c) { | 
            ||
| 794 | }  | 
            ||
| 795 | }  | 
            ||
| 796 | |||
| 797 | /**  | 
            ||
| 798 | * Attach given matrix to the left of this matrix.  | 
            ||
| 799 | *  | 
            ||
| 800 | * @param \Np\matrix $m  | 
            ||
| 801 | * @return \Np\matrix  | 
            ||
| 802 | */  | 
            ||
| 803 |     public function joinLeft(matrix $m): matrix { | 
            ||
| 804 |         if ($this->row == $m->row) { | 
            ||
| 805 | $col = $this->col + $m->col;  | 
            ||
| 806 | $ar = self::factory($this->row, $col);  | 
            ||
| 807 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 808 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 809 | $ar->data[$i * $col + $j] = $this->data[$i * $this->col + $j];  | 
            ||
| 810 | }  | 
            ||
| 811 |                 for ($j = 0; $j < $m->col; ++$j) { | 
            ||
| 812 | $ar->data[$i * $col + ($this->col + $j)] = $m->data[$i * $m->col + $j];  | 
            ||
| 813 | }  | 
            ||
| 814 | }  | 
            ||
| 815 | return $ar;  | 
            ||
| 816 | }  | 
            ||
| 817 |         self::_err('Error::Invalid size! or DataType!'); | 
            ||
| 818 | }  | 
            ||
| 819 | |||
| 820 | /**  | 
            ||
| 821 | * Join matrix m to the Right of this matrix.  | 
            ||
| 822 | * @param \Np\matrix $m  | 
            ||
| 823 | * @return matrix  | 
            ||
| 824 | */  | 
            ||
| 825 |     public function joinRight(matrix $m): matrix { | 
            ||
| 826 |         if ($this->row == $m->row) { | 
            ||
| 827 |             self::_err('Error::Invalid size! or DataType!'); | 
            ||
| 828 | }  | 
            ||
| 829 | $col = $this->col + $m->col;  | 
            ||
| 830 | $ar = self::factory($this->row, $col);  | 
            ||
| 831 |         for ($i = 0; $i < $m->row; ++$i) { | 
            ||
| 832 |             for ($j = 0; $j < $m->col; ++$j) { | 
            ||
| 833 | $ar->data[$i * $col + $j] = $m->data[$i * $m->col + $j];  | 
            ||
| 834 | }  | 
            ||
| 835 |             for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 836 | $ar->data[$i * $col + ($this->col + $j)] = $this->data[$i * $this->col + $j];  | 
            ||
| 837 | }  | 
            ||
| 838 | }  | 
            ||
| 839 | return $ar;  | 
            ||
| 840 | }  | 
            ||
| 841 | |||
| 842 | /**  | 
            ||
| 843 | * Join matrix m Above this matrix.  | 
            ||
| 844 | * @param \Np\matrix $m  | 
            ||
| 845 | * @return matrix  | 
            ||
| 846 | */  | 
            ||
| 847 |     public function joinAbove(matrix $m): matrix { | 
            ||
| 862 | }  | 
            ||
| 863 | |||
| 864 | /**  | 
            ||
| 865 | * Join matrix m below this matrix.  | 
            ||
| 866 | * @param \Np\matrix $m  | 
            ||
| 867 | * @return matrix  | 
            ||
| 868 | */  | 
            ||
| 869 |     public function joinBelow(matrix $m): matrix { | 
            ||
| 870 |         if ($this->col == $m->col) { | 
            ||
| 871 | $row = $this->row + $m->row;  | 
            ||
| 872 | $ar = self::factory($row, $this->col);  | 
            ||
| 873 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 874 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 875 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j];  | 
            ||
| 876 | }  | 
            ||
| 877 |                 for ($j = 0; $j < $m->col; ++$j) { | 
            ||
| 878 | $ar->data[($i + $m->row) * $m->col + $j] = $m->data[$i * $m->col + $j];  | 
            ||
| 879 | }  | 
            ||
| 880 | }  | 
            ||
| 881 | return $ar;  | 
            ||
| 882 | }  | 
            ||
| 883 |         self::_err('Error::Invalid size! or DataType!'); | 
            ||
| 884 | }  | 
            ||
| 885 | |||
| 886 | /**  | 
            ||
| 887 | *  | 
            ||
| 888 | * @param int $cols  | 
            ||
| 889 | * @return \Np\matrix  | 
            ||
| 890 | */  | 
            ||
| 891 |     public function diminish_left(int $cols): matrix { | 
            ||
| 892 | $ar = self::factory($this->row, $cols);  | 
            ||
| 893 |         for ($i = 0; $i < $ar->row; ++$i) { | 
            ||
| 894 |             for ($j = 0; $j < $ar->col; ++$j) { | 
            ||
| 895 | $ar->data[$i * $ar->col + $j] = $this->data[$i * $this->col + $j];  | 
            ||
| 896 | }  | 
            ||
| 897 | }  | 
            ||
| 898 | return $ar;  | 
            ||
| 899 | }  | 
            ||
| 900 | |||
| 901 | /**  | 
            ||
| 902 | *  | 
            ||
| 903 | * @param int $cols  | 
            ||
| 904 | * @return \Np\matrix  | 
            ||
| 905 | */  | 
            ||
| 906 |     public function diminish_right(int $cols): matrix { | 
            ||
| 907 | $ar = self::factory($this->row, $cols);  | 
            ||
| 908 |         for ($i = 0; $i < $ar->row; ++$i) { | 
            ||
| 909 |             for ($j = 0; $j < $ar->col; ++$j) { | 
            ||
| 910 | $ar->data[$i * $ar->col + $j] = $this->data[$i * $this->col - $cols + $j];  | 
            ||
| 911 | }  | 
            ||
| 912 | }  | 
            ||
| 913 | return $ar;  | 
            ||
| 914 | }  | 
            ||
| 915 | |||
| 916 | /**  | 
            ||
| 917 | * Return the index of the maximum element in every row of the matrix.  | 
            ||
| 918 | * @return \Np\vector int  | 
            ||
| 919 | */  | 
            ||
| 920 |     public function argMax(): vector { | 
            ||
| 921 | $v = vector::factory($this->row, vector::INT);  | 
            ||
| 922 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 923 | $v->data[$i] = blas::max($this->rowAsVector($i));  | 
            ||
| 924 | }  | 
            ||
| 925 | return $v;  | 
            ||
| 926 | }  | 
            ||
| 927 | |||
| 928 | /**  | 
            ||
| 929 | * Return the index of the minimum element in every row of the matrix.  | 
            ||
| 930 | * @return \Np\vector int  | 
            ||
| 931 | */  | 
            ||
| 932 |     public function argMin(): vector { | 
            ||
| 933 | $v = vector::factory($this->row, vector::INT);  | 
            ||
| 934 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 935 | $v->data[$i] = blas::min($this->rowAsVector($i));  | 
            ||
| 936 | }  | 
            ||
| 937 | |||
| 938 | return $v;  | 
            ||
| 939 | }  | 
            ||
| 940 | |||
| 941 | /**  | 
            ||
| 942 | * Set given data in matrix  | 
            ||
| 943 | * @param int|float|array $data  | 
            ||
| 944 | * @param bool $dignoal  | 
            ||
| 945 | * @return void  | 
            ||
| 946 | */  | 
            ||
| 947 |     public function setData(int|float|array $data): void { | 
            ||
| 948 | |||
| 949 |         if (is_array($data) && is_array($data[0])) { | 
            ||
| 950 | $f = $this->flattenArray($data);  | 
            ||
| 951 |             foreach ($f as $k => $v) { | 
            ||
| 952 | $this->data[$k] = $v;  | 
            ||
| 953 | }  | 
            ||
| 954 |         } elseif (is_numeric($data)) { | 
            ||
| 955 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 956 | $this->data[$i] = $data;  | 
            ||
| 957 | }  | 
            ||
| 958 |         } elseif (is_array($data) && !is_array($data[0])) { | 
            ||
| 959 |             foreach ($data as $i => $v) { | 
            ||
| 960 | $this->data[$i] = $v;  | 
            ||
| 961 | }  | 
            ||
| 962 | }  | 
            ||
| 963 | }  | 
            ||
| 964 | |||
| 965 | /**  | 
            ||
| 966 | * get the matrix data type  | 
            ||
| 967 | * @return int  | 
            ||
| 968 | */  | 
            ||
| 969 |     public function getDtype(): int { | 
            ||
| 970 | return $this->dtype;  | 
            ||
| 971 | }  | 
            ||
| 972 | |||
| 973 | /**  | 
            ||
| 974 | * get the shape of matrix  | 
            ||
| 975 | * @return object  | 
            ||
| 976 | */  | 
            ||
| 977 |     public function getShape(): object { | 
            ||
| 978 | return (object) ['m' => $this->row, 'n' => $this->col];  | 
            ||
| 979 | }  | 
            ||
| 980 | |||
| 981 | /**  | 
            ||
| 982 | * get the number of elements in the matrix.  | 
            ||
| 983 | * @return int  | 
            ||
| 984 | */  | 
            ||
| 985 |     public function getSize(): int { | 
            ||
| 986 | return $this->ndim;  | 
            ||
| 987 | }  | 
            ||
| 988 | |||
| 989 | /**  | 
            ||
| 990 | * Is the matrix symmetric i.e. is it equal to its own transpose?  | 
            ||
| 991 | *  | 
            ||
| 992 | * @return bool  | 
            ||
| 993 | */  | 
            ||
| 994 |     public function isSymmetric(): bool { | 
            ||
| 995 |         if (!$this->isSquare()) { | 
            ||
| 996 | return false;  | 
            ||
| 997 | }  | 
            ||
| 998 | $ar = $this->transpose();  | 
            ||
| 999 |         for ($i = 0; $i < $ar->ndim; ++$i) { | 
            ||
| 1000 |             if ($ar->data[$i] != $this->data[$i]) { | 
            ||
| 1001 | unset($ar);  | 
            ||
| 1002 | return false;  | 
            ||
| 1003 | }  | 
            ||
| 1004 | }  | 
            ||
| 1005 | unset($ar);  | 
            ||
| 1006 | return true;  | 
            ||
| 1007 | }  | 
            ||
| 1008 | |||
| 1009 | /**  | 
            ||
| 1010 | * is matrix squred  | 
            ||
| 1011 | * @return bool  | 
            ||
| 1012 | */  | 
            ||
| 1013 |     public function isSquare(): bool { | 
            ||
| 1014 |         if ($this->row === $this->col) { | 
            ||
| 1015 | return true;  | 
            ||
| 1016 | }  | 
            ||
| 1017 | return false;  | 
            ||
| 1018 | }  | 
            ||
| 1019 | |||
| 1020 | /**  | 
            ||
| 1021 | *  | 
            ||
| 1022 | * @param int|float $d  | 
            ||
| 1023 | * @return bool  | 
            ||
| 1024 | */  | 
            ||
| 1025 |     public static function is_zero($d): bool { | 
            ||
| 1026 |         if (abs($d) < self::EPSILON) { | 
            ||
| 1027 | return true;  | 
            ||
| 1028 | }  | 
            ||
| 1029 | return false;  | 
            ||
| 1030 | }  | 
            ||
| 1031 | |||
| 1032 | /**  | 
            ||
| 1033 | * is row zero  | 
            ||
| 1034 | * @param int $row  | 
            ||
| 1035 | * @return bool  | 
            ||
| 1036 | */  | 
            ||
| 1037 |     public function is_rowZero(int $row): bool { | 
            ||
| 1038 |         for ($i = 0; $i < $this->col; ++$i) { | 
            ||
| 1039 |             if ($this->data[$row * $this->col + $i] != 0) { | 
            ||
| 1040 | return false;  | 
            ||
| 1041 | }  | 
            ||
| 1042 | }  | 
            ||
| 1043 | return true;  | 
            ||
| 1044 | }  | 
            ||
| 1045 | |||
| 1046 | /**  | 
            ||
| 1047 | *  | 
            ||
| 1048 | * @return bool  | 
            ||
| 1049 | */  | 
            ||
| 1050 |     public function has_ZeroRow(): bool { | 
            ||
| 1051 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 1052 |             if ($this->is_rowZero($i)) { | 
            ||
| 1053 | return true;  | 
            ||
| 1054 | }  | 
            ||
| 1055 | }  | 
            ||
| 1056 | return false;  | 
            ||
| 1057 | }  | 
            ||
| 1058 | |||
| 1059 | /**  | 
            ||
| 1060 | * Return the elements of the matrix in a 2-d array.  | 
            ||
| 1061 | * @return array  | 
            ||
| 1062 | */  | 
            ||
| 1063 |     public function asArray(): array { | 
            ||
| 1064 | $ar = array_fill(0, $this->row, array_fill(0, $this->col, null));  | 
            ||
| 1065 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 1066 |             for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 1067 | $ar[$i][$j] = $this->data[$i * $this->col + $j];  | 
            ||
| 1068 | }  | 
            ||
| 1069 | }  | 
            ||
| 1070 | return $ar;  | 
            ||
| 1071 | }  | 
            ||
| 1072 | |||
| 1073 | /**  | 
            ||
| 1074 | * get a diagonal value from matrix  | 
            ||
| 1075 | * @param int $i  | 
            ||
| 1076 | * @return float  | 
            ||
| 1077 | */  | 
            ||
| 1078 |     public function getDiagonalVal(int $i) { | 
            ||
| 1079 |         if ($this->isSquare()) { | 
            ||
| 1080 | return $this->data[$i * $this->row + $i];  | 
            ||
| 1081 | }  | 
            ||
| 1082 | }  | 
            ||
| 1083 | |||
| 1084 | /**  | 
            ||
| 1085 | * Calculate the row echelon form of the matrix.  | 
            ||
| 1086 | * Return the reduced matrix.  | 
            ||
| 1087 | *  | 
            ||
| 1088 | * @return matrix|null  | 
            ||
| 1089 | */  | 
            ||
| 1090 |     public function ref(): matrix|null { | 
            ||
| 1091 | return ref::factory($this);  | 
            ||
| 1092 | }  | 
            ||
| 1093 | |||
| 1094 | /**  | 
            ||
| 1095 | * Return the lower triangular matrix of the Cholesky decomposition.  | 
            ||
| 1096 | *  | 
            ||
| 1097 | * @return matrix|null  | 
            ||
| 1098 | */  | 
            ||
| 1099 |     public function cholesky(): matrix|null { | 
            ||
| 1100 | return cholesky::factory($this);  | 
            ||
| 1101 | }  | 
            ||
| 1102 | |||
| 1103 | /**  | 
            ||
| 1104 | * FIXME--------------  | 
            ||
| 1105 | * RREF  | 
            ||
| 1106 | * The reduced row echelon form (RREF) of a matrix.  | 
            ||
| 1107 | * @return \Np\matrix  | 
            ||
| 1108 | */  | 
            ||
| 1109 |     public function rref(): matrix { | 
            ||
| 1110 | return rref::factory($this);  | 
            ||
| 1111 | }  | 
            ||
| 1112 | |||
| 1113 | /**  | 
            ||
| 1114 | * Compute the singular value decomposition of a matrix and  | 
            ||
| 1115 | * return an object of the singular values and unitary matrices  | 
            ||
| 1116 | *  | 
            ||
| 1117 | * @return object (u,s,v)  | 
            ||
| 1118 | */  | 
            ||
| 1119 |     public function svd(): svd { | 
            ||
| 1120 | return svd::factory($this);  | 
            ||
| 1121 | }  | 
            ||
| 1122 | |||
| 1123 | /**  | 
            ||
| 1124 | * Compute the eigen decomposition of a general matrix.  | 
            ||
| 1125 | * return the eigenvalues and eigenvectors as object  | 
            ||
| 1126 | *  | 
            ||
| 1127 | * @param bool $symmetric  | 
            ||
| 1128 | * @return eigen  | 
            ||
| 1129 | */  | 
            ||
| 1130 |     public function eign(bool $symmetric = false): eigen { | 
            ||
| 1131 | return eigen::factory($this, $symmetric);  | 
            ||
| 1132 | }  | 
            ||
| 1133 | |||
| 1134 | /**  | 
            ||
| 1135 | *  | 
            ||
| 1136 | * Compute the LU factorization of matrix.  | 
            ||
| 1137 | * return lower, upper, and permutation matrices as object.  | 
            ||
| 1138 | *  | 
            ||
| 1139 | * @return lu  | 
            ||
| 1140 | */  | 
            ||
| 1141 |     public function lu(): lu { | 
            ||
| 1142 | return lu::factory($this);  | 
            ||
| 1143 | }  | 
            ||
| 1144 | |||
| 1145 | /**  | 
            ||
| 1146 | * Return the L1 norm of the matrix.  | 
            ||
| 1147 | * @return float  | 
            ||
| 1148 | */  | 
            ||
| 1149 |     public function normL1(): float { | 
            ||
| 1150 |         return lapack::lange('l', $this); | 
            ||
| 1151 | }  | 
            ||
| 1152 | |||
| 1153 | /**  | 
            ||
| 1154 | * Return the L2 norm of the matrix.  | 
            ||
| 1155 | * @return float  | 
            ||
| 1156 | */  | 
            ||
| 1157 |     public function normL2(): float { | 
            ||
| 1158 |         return lapack::lange('f', $this); | 
            ||
| 1159 | }  | 
            ||
| 1160 | |||
| 1161 | /**  | 
            ||
| 1162 | * Return the L1 norm of the matrix.  | 
            ||
| 1163 | * @return float  | 
            ||
| 1164 | */  | 
            ||
| 1165 |     public function normINF(): float { | 
            ||
| 1166 |         return lapack::lange('i', $this); | 
            ||
| 1167 | }  | 
            ||
| 1168 | |||
| 1169 | /**  | 
            ||
| 1170 | * Return the Frobenius norm of the matrix.  | 
            ||
| 1171 | * @return float  | 
            ||
| 1172 | */  | 
            ||
| 1173 |     public function normFrob(): float { | 
            ||
| 1174 | return $this->normL2();  | 
            ||
| 1175 | }  | 
            ||
| 1176 | |||
| 1177 | /**  | 
            ||
| 1178 | * Compute the means of each row and return them in a vector.  | 
            ||
| 1179 | *  | 
            ||
| 1180 | * @return vector  | 
            ||
| 1181 | */  | 
            ||
| 1182 |     public function mean(): vector { | 
            ||
| 1183 | return $this->sumRows()->divide($this->col);  | 
            ||
| 1184 | }  | 
            ||
| 1185 | |||
| 1186 | /**  | 
            ||
| 1187 | * Compute the row variance of the matrix.  | 
            ||
| 1188 | *  | 
            ||
| 1189 | * @param vector|null $mean  | 
            ||
| 1190 | * @return vector  | 
            ||
| 1191 | */  | 
            ||
| 1192 |     public function variance(vector|null $mean = null): vector { | 
            ||
| 1193 |         if (isset($mean)) { | 
            ||
| 1194 |             if (!$mean instanceof vector) { | 
            ||
| 
                                                                                                    
                        
                         | 
                |||
| 1195 |                 self::_invalidArgument('mean must be a vector!'); | 
            ||
| 1196 | }  | 
            ||
| 1197 |             if ($this->row !== $mean->col) { | 
            ||
| 1198 |                 self::_err('Err:: given mean vector dimensionality mismatched!'); | 
            ||
| 1199 | }  | 
            ||
| 1200 |         } else { | 
            ||
| 1201 | $mean = $this->mean();  | 
            ||
| 1202 | }  | 
            ||
| 1203 | return $this->subtractColumnVector($mean)->square()  | 
            ||
| 1204 | ->sumRows()->divide($this->row);  | 
            ||
| 1205 | }  | 
            ||
| 1206 | |||
| 1207 | /**  | 
            ||
| 1208 | * Return the median vector of this matrix.  | 
            ||
| 1209 | * @return vector  | 
            ||
| 1210 | */  | 
            ||
| 1211 |     public function median(): vector { | 
            ||
| 1212 | $mid = intdiv($this->col, 2);  | 
            ||
| 1213 | $odd = $this->col % 2 === 1;  | 
            ||
| 1214 | $vr = vector::factory($this->row);  | 
            ||
| 1215 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 1216 | $a = $this->rowAsVector($i)->sort();  | 
            ||
| 1217 |             if ($odd) { | 
            ||
| 1218 | $median = $a->data[$mid];  | 
            ||
| 1219 |             } else { | 
            ||
| 1220 | $median = ($a->data[$mid - 1] + $a->data[$mid]) / 2.0;  | 
            ||
| 1221 | }  | 
            ||
| 1222 | $vr->data[$i] = $median;  | 
            ||
| 1223 | }  | 
            ||
| 1224 | unset($a);  | 
            ||
| 1225 | return $vr;  | 
            ||
| 1226 | }  | 
            ||
| 1227 | |||
| 1228 | /**  | 
            ||
| 1229 | * Compute the covariance matrix.  | 
            ||
| 1230 | *  | 
            ||
| 1231 | * @param vector|null $mean  | 
            ||
| 1232 | * @return matrix  | 
            ||
| 1233 | */  | 
            ||
| 1234 |     public function covariance(vector|null $mean = null): matrix { | 
            ||
| 1235 |         if (isset($mean)) { | 
            ||
| 1236 |             if ($mean->col !== $this->row) { | 
            ||
| 1237 |                 self::_err('Err:: given mean vector dimensionality mismatched!'); | 
            ||
| 1238 | }  | 
            ||
| 1239 |         } else { | 
            ||
| 1240 | $mean = $this->mean();  | 
            ||
| 1241 | }  | 
            ||
| 1242 | |||
| 1243 | $b = $this->subtractColumnVector($mean);  | 
            ||
| 1244 | |||
| 1245 | return $b->dot($b->transpose())  | 
            ||
| 1246 | ->divideScalar($this->row);  | 
            ||
| 1247 | }  | 
            ||
| 1248 | |||
| 1249 | /**  | 
            ||
| 1250 | * Square of matrix  | 
            ||
| 1251 | * @return matrix  | 
            ||
| 1252 | */  | 
            ||
| 1253 |     public function square(): matrix { | 
            ||
| 1254 | return $this->multiplyMatrix($this);  | 
            ||
| 1255 | }  | 
            ||
| 1256 | |||
| 1257 | /**  | 
            ||
| 1258 | *  | 
            ||
| 1259 | * @param int|float|matrix|vector $d  | 
            ||
| 1260 | * @return matrix  | 
            ||
| 1261 | */  | 
            ||
| 1262 |     public function equal(int|float|matrix|vector $d): matrix { | 
            ||
| 1263 |         if ($d instanceof self) { | 
            ||
| 1264 | return $this->equalMatrix($d);  | 
            ||
| 1265 | }  | 
            ||
| 1266 |         if ($d instanceof vector) { | 
            ||
| 1267 | return $this->equalVector($d);  | 
            ||
| 1268 | }  | 
            ||
| 1269 | return $this->equalScalar($d);  | 
            ||
| 1270 | }  | 
            ||
| 1271 | |||
| 1272 |     protected function equalMatrix(matrix $m): matrix { | 
            ||
| 1273 |         if ($this->checkShape($this, $m)) { | 
            ||
| 1274 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 1275 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 1276 | $ar->data[$i] = $this->data[$i] == $m->data[$i] ? 1 : 0;  | 
            ||
| 1277 | }  | 
            ||
| 1278 | return $ar;  | 
            ||
| 1279 | }  | 
            ||
| 1280 | }  | 
            ||
| 1281 | |||
| 1282 |     protected function equalVector(vector $v): matrix { | 
            ||
| 1283 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 1284 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 1285 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 1286 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 1287 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] == $v->data[$j] ? 1 : 0;  | 
            ||
| 1288 | }  | 
            ||
| 1289 | }  | 
            ||
| 1290 | return $ar;  | 
            ||
| 1291 | }  | 
            ||
| 1292 | }  | 
            ||
| 1293 | |||
| 1294 |     protected function equalScalar(int|float $s): matrix { | 
            ||
| 1295 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 1296 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 1297 | $ar->data[$i] = $this->data[$i] == $s ? 1 : 0;  | 
            ||
| 1298 | }  | 
            ||
| 1299 | return $ar;  | 
            ||
| 1300 | }  | 
            ||
| 1301 | |||
| 1302 | /**  | 
            ||
| 1303 | *  | 
            ||
| 1304 | * @param int|float|matrix|vector $d  | 
            ||
| 1305 | * @return matrix  | 
            ||
| 1306 | */  | 
            ||
| 1307 |     public function greater(int|float|matrix|vector $d): matrix { | 
            ||
| 1315 | }  | 
            ||
| 1316 | |||
| 1317 |     protected function greaterMatrix(matrix $m): matrix { | 
            ||
| 1318 |         if ($this->checkShape($this, $m)) { | 
            ||
| 1319 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 1320 |             for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 1321 | $ar->data[$i] = $this->data[$i] > $m->data[$i] ? 1 : 0;  | 
            ||
| 1322 | }  | 
            ||
| 1323 | return $ar;  | 
            ||
| 1324 | }  | 
            ||
| 1325 | }  | 
            ||
| 1326 | |||
| 1327 |     protected function greaterVector(vector $v): matrix { | 
            ||
| 1328 |         if ($this->checkDimensions($v, $this)) { | 
            ||
| 1329 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 1330 |             for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 1331 |                 for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 1332 | $ar->data[$i * $this->col + $j] = $this->data[$i * $this->col + $j] > $v->data[$j] ? 1 : 0;  | 
            ||
| 1333 | }  | 
            ||
| 1334 | }  | 
            ||
| 1335 | return $ar;  | 
            ||
| 1336 | }  | 
            ||
| 1337 | }  | 
            ||
| 1338 | |||
| 1339 |     protected function greaterScalar(int|float $s): matrix { | 
            ||
| 1340 | $ar = self::factory($this->row, $this->col);  | 
            ||
| 1341 |         for ($i = 0; $i < $this->ndim; ++$i) { | 
            ||
| 1342 | $ar->data[$i] = $this->data[$i] > $s ? 1 : 0;  | 
            ||
| 1343 | }  | 
            ||
| 1344 | return $ar;  | 
            ||
| 1345 | }  | 
            ||
| 1346 | |||
| 1347 | /**  | 
            ||
| 1348 | *  | 
            ||
| 1349 | * @param int|float|matrix $m  | 
            ||
| 1350 | * @return matrix  | 
            ||
| 1351 | */  | 
            ||
| 1352 |     public function less(int|float|matrix $m): matrix { | 
            ||
| 1366 | }  | 
            ||
| 1367 | }  | 
            ||
| 1368 | |||
| 1369 | /**  | 
            ||
| 1370 | * print the matrix in consol  | 
            ||
| 1371 | */  | 
            ||
| 1372 |     public function printMatrix() { | 
            ||
| 1373 | echo __CLASS__ . PHP_EOL;  | 
            ||
| 1374 |         for ($i = 0; $i < $this->row; ++$i) { | 
            ||
| 1375 |             for ($j = 0; $j < $this->col; ++$j) { | 
            ||
| 1376 |                 printf('%lf  ', $this->data[$i * $this->col + $j]); | 
            ||
| 1377 | }  | 
            ||
| 1378 | echo PHP_EOL;  | 
            ||
| 1379 | }  | 
            ||
| 1380 | }  | 
            ||
| 1381 | |||
| 1382 |     public function __toString() { | 
            ||
| 1384 | }  | 
            ||
| 1385 | |||
| 1386 |     private function flattenArray(array $ar) { | 
            ||
| 1387 |         if (is_array($ar) && is_array($ar[0])) { | 
            ||
| 1388 | $a = [];  | 
            ||
| 1389 |             foreach ($ar as $y => $value) { | 
            ||
| 1390 |                 foreach ($value as $k => $v) { | 
            ||
| 1391 | $a[] = $v;  | 
            ||
| 1392 | }  | 
            ||
| 1393 | }  | 
            ||
| 1394 | return $a;  | 
            ||
| 1395 | }  | 
            ||
| 1396 | }  | 
            ||
| 1397 | |||
| 1398 | /**  | 
            ||
| 1399 | *  | 
            ||
| 1400 | * @param int $row  | 
            ||
| 1401 | * @param int $col  | 
            ||
| 1402 | * @param int $dtype  | 
            ||
| 1403 | * @return $this  | 
            ||
| 1404 | */  | 
            ||
| 1405 |     protected function __construct(public int $row, public int $col, int $dtype = self::DOUBLE) { | 
            ||
| 1411 | }  | 
            ||
| 1412 | }  | 
            ||
| 1413 |