|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Np; |
|
6
|
|
|
|
|
7
|
|
|
use Np\exceptions\dtypeException; |
|
8
|
|
|
|
|
9
|
|
|
/** |
|
10
|
|
|
* Convolve |
|
11
|
|
|
* |
|
12
|
|
|
* 1D & 2D SignalProcessing in pure php |
|
13
|
|
|
* |
|
14
|
|
|
* @package Np |
|
15
|
|
|
* @category Scientific Computing |
|
16
|
|
|
* @author ghost (Shubham Chaudhary) |
|
17
|
|
|
* @email [email protected] |
|
18
|
|
|
* @copyright (c) 2020-2021, Shubham Chaudhary |
|
19
|
|
|
*/ |
|
20
|
|
|
class convolve { |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* 1D convolution between a vector v and kernel k, with a given stride. |
|
24
|
|
|
* |
|
25
|
|
|
* @param \Np\vector $v |
|
26
|
|
|
* @param \Np\vector $k |
|
27
|
|
|
* @param int $stride |
|
28
|
|
|
* @return vector |
|
29
|
|
|
* @throws \Exception |
|
30
|
|
|
*/ |
|
31
|
|
|
public static function conv1D(\Np\vector $v, \Np\vector $k, int $stride = 1): vector { |
|
32
|
|
|
$nc = $v->col + $k->col - 1; |
|
33
|
|
|
$r = vector::factory($nc / $stride); |
|
34
|
|
|
for ($i = 0; $i < $nc; $i += $stride) { |
|
35
|
|
|
$jmin = $i >= $k->col - 1 ? $i - ($k->col - 1) : 0; |
|
36
|
|
|
$jmax = $i <= $v->col ? $i : $v->col - 1; |
|
37
|
|
|
$sigma = 0.0; |
|
38
|
|
|
for ($j = $jmin; $j <= $jmax; ++$j) { |
|
39
|
|
|
$sigma += $v->data[$j] * $k->data[$i - $j]; |
|
40
|
|
|
} |
|
41
|
|
|
$r->data[$i] = $sigma; |
|
42
|
|
|
} |
|
43
|
|
|
return $r; |
|
44
|
|
|
} |
|
45
|
|
|
|
|
46
|
|
|
/** |
|
47
|
|
|
* 2D convolution between a matrix ma and kernel kb, with a given stride. |
|
48
|
|
|
* |
|
49
|
|
|
* @param \Np\matrix $ma |
|
50
|
|
|
* @param \Np\matrix $kb |
|
51
|
|
|
* @param int $stride |
|
52
|
|
|
* @return matrix |
|
53
|
|
|
* @throws \Exception |
|
54
|
|
|
*/ |
|
55
|
|
|
public static function conv2D(\Np\matrix $ma, \Np\matrix $kb, int $stride = 1): matrix { |
|
56
|
|
|
$p = $kb->row / 2; |
|
57
|
|
|
$q = $kb->col / 2; |
|
58
|
|
|
$rc = matrix::factory($ma->row / $stride, $ma->col / $stride); |
|
59
|
|
|
for ($i = 0; $i < $ma->row; $i += $stride) { |
|
60
|
|
|
|
|
61
|
|
|
for ($j = 0; $j < $ma->col; $j += $stride) { |
|
62
|
|
|
$sgima = 0.0; |
|
63
|
|
|
for ($k = 0; $k < $kb->row; ++$k) { |
|
64
|
|
|
$x = $i + $p - $k; |
|
65
|
|
|
if ($x < 0 || $x >= $ma->row) { |
|
66
|
|
|
continue; |
|
67
|
|
|
} |
|
68
|
|
|
for ($l = 0; $l < $kb->col; ++$l) { |
|
69
|
|
|
$y = $j + $q - $l; |
|
70
|
|
|
if ($y >= 0 && $y < $ma->col) { |
|
71
|
|
|
$sgima += $ma->data[$x * $ma->col + $y] * $kb->data[$k * $kb->col + $l]; |
|
72
|
|
|
} |
|
73
|
|
|
} |
|
74
|
|
|
} |
|
75
|
|
|
$rc->data[$i * $ma->col + $j] = $sgima; |
|
76
|
|
|
} |
|
77
|
|
|
} |
|
78
|
|
|
return $rc; |
|
79
|
|
|
} |
|
80
|
|
|
|
|
81
|
|
|
} |
|
82
|
|
|
|