|
1
|
|
|
import warnings |
|
2
|
|
|
from pathlib import Path |
|
3
|
|
|
from typing import Tuple, Union, Optional |
|
4
|
|
|
|
|
5
|
|
|
import torch |
|
6
|
|
|
import numpy as np |
|
7
|
|
|
import nibabel as nib |
|
8
|
|
|
import SimpleITK as sitk |
|
9
|
|
|
|
|
10
|
|
|
from ..constants import REPO_URL |
|
11
|
|
|
from ..typing import TypePath, TypeData, TypeTripletFloat, TypeDirection |
|
12
|
|
|
|
|
13
|
|
|
|
|
14
|
|
|
# Matrices used to switch between LPS and RAS |
|
15
|
|
|
FLIPXY_33 = np.diag([-1, -1, 1]) |
|
16
|
|
|
FLIPXY_44 = np.diag([-1, -1, 1, 1]) |
|
17
|
|
|
|
|
18
|
|
|
# Image formats that are typically 2D |
|
19
|
|
|
formats = ['.jpg', '.jpeg', '.bmp', '.png', '.tif', '.tiff'] |
|
20
|
|
|
IMAGE_2D_FORMATS = formats + [s.upper() for s in formats] |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
def read_image(path: TypePath) -> Tuple[torch.Tensor, np.ndarray]: |
|
24
|
|
|
try: |
|
25
|
|
|
result = _read_sitk(path) |
|
26
|
|
|
except RuntimeError as e: # try with NiBabel |
|
27
|
|
|
message = ( |
|
28
|
|
|
f'Error loading image with SimpleITK:\n{e}\n\nTrying NiBabel...' |
|
29
|
|
|
) |
|
30
|
|
|
warnings.warn(message) |
|
31
|
|
|
try: |
|
32
|
|
|
result = _read_nibabel(path) |
|
33
|
|
|
except nib.loadsave.ImageFileError as e: |
|
34
|
|
|
message = ( |
|
35
|
|
|
f'File "{path}" not understood.' |
|
36
|
|
|
' Check supported formats by at' |
|
37
|
|
|
' https://simpleitk.readthedocs.io/en/master/IO.html#images' |
|
38
|
|
|
' and https://nipy.org/nibabel/api.html#file-formats' |
|
39
|
|
|
) |
|
40
|
|
|
raise RuntimeError(message) from e |
|
41
|
|
|
return result |
|
42
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
def _read_nibabel(path: TypePath) -> Tuple[torch.Tensor, np.ndarray]: |
|
45
|
|
|
img = nib.load(str(path), mmap=False) |
|
46
|
|
|
data = img.get_fdata(dtype=np.float32) |
|
47
|
|
|
if data.ndim == 5: |
|
48
|
|
|
data = data[..., 0, :] |
|
49
|
|
|
data = data.transpose(3, 0, 1, 2) |
|
50
|
|
|
data = check_uint_to_int(data) |
|
51
|
|
|
tensor = torch.as_tensor(data) |
|
52
|
|
|
affine = img.affine |
|
53
|
|
|
return tensor, affine |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
|
def _read_sitk(path: TypePath) -> Tuple[torch.Tensor, np.ndarray]: |
|
57
|
|
|
if Path(path).is_dir(): # assume DICOM |
|
58
|
|
|
image = _read_dicom(path) |
|
59
|
|
|
else: |
|
60
|
|
|
image = sitk.ReadImage(str(path)) |
|
61
|
|
|
data, affine = sitk_to_nib(image, keepdim=True) |
|
62
|
|
|
data = check_uint_to_int(data) |
|
63
|
|
|
tensor = torch.as_tensor(data) |
|
64
|
|
|
return tensor, affine |
|
65
|
|
|
|
|
66
|
|
|
|
|
67
|
|
|
def _read_dicom(directory: TypePath): |
|
68
|
|
|
directory = Path(directory) |
|
69
|
|
|
if not directory.is_dir(): # unreachable if called from _read_sitk |
|
70
|
|
|
raise FileNotFoundError(f'Directory "{directory}" not found') |
|
71
|
|
|
reader = sitk.ImageSeriesReader() |
|
72
|
|
|
dicom_names = reader.GetGDCMSeriesFileNames(str(directory)) |
|
73
|
|
|
if not dicom_names: |
|
74
|
|
|
message = ( |
|
75
|
|
|
f'The directory "{directory}"' |
|
76
|
|
|
' does not seem to contain DICOM files' |
|
77
|
|
|
) |
|
78
|
|
|
raise FileNotFoundError(message) |
|
79
|
|
|
reader.SetFileNames(dicom_names) |
|
80
|
|
|
image = reader.Execute() |
|
81
|
|
|
return image |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
def read_shape(path: TypePath) -> Tuple[int, int, int, int]: |
|
85
|
|
|
reader = sitk.ImageFileReader() |
|
86
|
|
|
reader.SetFileName(str(path)) |
|
87
|
|
|
reader.ReadImageInformation() |
|
88
|
|
|
num_channels = reader.GetNumberOfComponents() |
|
89
|
|
|
spatial_shape = reader.GetSize() |
|
90
|
|
|
num_dimensions = reader.GetDimension() |
|
91
|
|
|
if num_dimensions == 2: |
|
92
|
|
|
spatial_shape = *spatial_shape, 1 |
|
93
|
|
|
elif num_dimensions == 4: # assume bad NIfTI |
|
94
|
|
|
*spatial_shape, num_channels = spatial_shape |
|
95
|
|
|
shape = (num_channels,) + tuple(spatial_shape) |
|
96
|
|
|
return shape |
|
97
|
|
|
|
|
98
|
|
|
|
|
99
|
|
|
def read_affine(path: TypePath) -> np.ndarray: |
|
100
|
|
|
reader = get_reader(path) |
|
101
|
|
|
affine = get_ras_affine_from_sitk(reader) |
|
102
|
|
|
return affine |
|
103
|
|
|
|
|
104
|
|
|
|
|
105
|
|
|
def get_reader(path: TypePath, read: bool = True) -> sitk.ImageFileReader: |
|
106
|
|
|
reader = sitk.ImageFileReader() |
|
107
|
|
|
reader.SetFileName(str(path)) |
|
108
|
|
|
if read: |
|
109
|
|
|
reader.ReadImageInformation() |
|
110
|
|
|
return reader |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
def write_image( |
|
114
|
|
|
tensor: torch.Tensor, |
|
115
|
|
|
affine: TypeData, |
|
116
|
|
|
path: TypePath, |
|
117
|
|
|
squeeze: Optional[bool] = None, |
|
118
|
|
|
) -> None: |
|
119
|
|
|
args = tensor, affine, path |
|
120
|
|
|
try: |
|
121
|
|
|
_write_sitk(*args, squeeze=squeeze) |
|
122
|
|
|
except RuntimeError: # try with NiBabel |
|
123
|
|
|
_write_nibabel(*args) |
|
124
|
|
|
|
|
125
|
|
|
|
|
126
|
|
|
def _write_nibabel( |
|
127
|
|
|
tensor: TypeData, |
|
128
|
|
|
affine: TypeData, |
|
129
|
|
|
path: TypePath, |
|
130
|
|
|
) -> None: |
|
131
|
|
|
""" |
|
132
|
|
|
Expects a path with an extension that can be used by nibabel.save |
|
133
|
|
|
to write a NIfTI-1 image, such as '.nii.gz' or '.img' |
|
134
|
|
|
""" |
|
135
|
|
|
assert tensor.ndim == 4 |
|
136
|
|
|
num_components = tensor.shape[0] |
|
137
|
|
|
|
|
138
|
|
|
# NIfTI components must be at the end, in a 5D array |
|
139
|
|
|
if num_components == 1: |
|
140
|
|
|
tensor = tensor[0] |
|
141
|
|
|
else: |
|
142
|
|
|
tensor = tensor[np.newaxis].permute(2, 3, 4, 0, 1) |
|
143
|
|
|
suffix = Path(str(path).replace('.gz', '')).suffix |
|
144
|
|
|
if '.nii' in suffix: |
|
145
|
|
|
img = nib.Nifti1Image(np.asarray(tensor), affine) |
|
146
|
|
|
elif '.hdr' in suffix or '.img' in suffix: |
|
147
|
|
|
img = nib.Nifti1Pair(np.asarray(tensor), affine) |
|
148
|
|
|
else: |
|
149
|
|
|
raise nib.loadsave.ImageFileError |
|
150
|
|
|
if num_components > 1: |
|
151
|
|
|
img.header.set_intent('vector') |
|
152
|
|
|
img.header['qform_code'] = 1 |
|
153
|
|
|
img.header['sform_code'] = 0 |
|
154
|
|
|
nib.save(img, str(path)) |
|
155
|
|
|
|
|
156
|
|
|
|
|
157
|
|
|
def _write_sitk( |
|
158
|
|
|
tensor: torch.Tensor, |
|
159
|
|
|
affine: TypeData, |
|
160
|
|
|
path: TypePath, |
|
161
|
|
|
use_compression: bool = True, |
|
162
|
|
|
squeeze: Optional[bool] = None, |
|
163
|
|
|
) -> None: |
|
164
|
|
|
assert tensor.ndim == 4 |
|
165
|
|
|
path = Path(path) |
|
166
|
|
|
if path.suffix in ('.png', '.jpg', '.jpeg', '.bmp'): |
|
167
|
|
|
warnings.warn( |
|
168
|
|
|
f'Casting to uint 8 before saving to {path}', |
|
169
|
|
|
RuntimeWarning, |
|
170
|
|
|
) |
|
171
|
|
|
tensor = tensor.numpy().astype(np.uint8) |
|
172
|
|
|
if squeeze is None: |
|
173
|
|
|
force_3d = path.suffix not in IMAGE_2D_FORMATS |
|
174
|
|
|
else: |
|
175
|
|
|
force_3d = not squeeze |
|
176
|
|
|
image = nib_to_sitk(tensor, affine, force_3d=force_3d) |
|
177
|
|
|
sitk.WriteImage(image, str(path), use_compression) |
|
178
|
|
|
|
|
179
|
|
|
|
|
180
|
|
|
def read_matrix(path: TypePath): |
|
181
|
|
|
"""Read an affine transform and convert to tensor.""" |
|
182
|
|
|
path = Path(path) |
|
183
|
|
|
suffix = path.suffix |
|
184
|
|
|
if suffix in ('.tfm', '.h5'): # ITK |
|
185
|
|
|
tensor = _read_itk_matrix(path) |
|
186
|
|
|
elif suffix in ('.txt', '.trsf'): # NiftyReg, blockmatching |
|
187
|
|
|
tensor = _read_niftyreg_matrix(path) |
|
188
|
|
|
else: |
|
189
|
|
|
raise ValueError(f'Unknown suffix for transform file: "{suffix}"') |
|
190
|
|
|
return tensor |
|
191
|
|
|
|
|
192
|
|
|
|
|
193
|
|
|
def write_matrix(matrix: torch.Tensor, path: TypePath): |
|
194
|
|
|
"""Write an affine transform.""" |
|
195
|
|
|
path = Path(path) |
|
196
|
|
|
suffix = path.suffix |
|
197
|
|
|
if suffix in ('.tfm', '.h5'): # ITK |
|
198
|
|
|
_write_itk_matrix(matrix, path) |
|
199
|
|
|
elif suffix in ('.txt', '.trsf'): # NiftyReg, blockmatching |
|
200
|
|
|
_write_niftyreg_matrix(matrix, path) |
|
201
|
|
|
|
|
202
|
|
|
|
|
203
|
|
|
def _to_itk_convention(matrix): |
|
204
|
|
|
"""RAS to LPS""" |
|
205
|
|
|
matrix = np.dot(FLIPXY_44, matrix) |
|
206
|
|
|
matrix = np.dot(matrix, FLIPXY_44) |
|
207
|
|
|
matrix = np.linalg.inv(matrix) |
|
208
|
|
|
return matrix |
|
209
|
|
|
|
|
210
|
|
|
|
|
211
|
|
|
def _from_itk_convention(matrix): |
|
212
|
|
|
"""LPS to RAS""" |
|
213
|
|
|
matrix = np.dot(matrix, FLIPXY_44) |
|
214
|
|
|
matrix = np.dot(FLIPXY_44, matrix) |
|
215
|
|
|
matrix = np.linalg.inv(matrix) |
|
216
|
|
|
return matrix |
|
217
|
|
|
|
|
218
|
|
|
|
|
219
|
|
|
def _read_itk_matrix(path): |
|
220
|
|
|
"""Read an affine transform in ITK's .tfm format""" |
|
221
|
|
|
transform = sitk.ReadTransform(str(path)) |
|
222
|
|
|
parameters = transform.GetParameters() |
|
223
|
|
|
rotation_parameters = parameters[:9] |
|
224
|
|
|
rotation_matrix = np.array(rotation_parameters).reshape(3, 3) |
|
225
|
|
|
translation_parameters = parameters[9:] |
|
226
|
|
|
translation_vector = np.array(translation_parameters).reshape(3, 1) |
|
227
|
|
|
matrix = np.hstack([rotation_matrix, translation_vector]) |
|
228
|
|
|
homogeneous_matrix_lps = np.vstack([matrix, [0, 0, 0, 1]]) |
|
229
|
|
|
homogeneous_matrix_ras = _from_itk_convention(homogeneous_matrix_lps) |
|
230
|
|
|
return torch.as_tensor(homogeneous_matrix_ras) |
|
231
|
|
|
|
|
232
|
|
|
|
|
233
|
|
|
def _write_itk_matrix(matrix, tfm_path): |
|
234
|
|
|
"""The tfm file contains the matrix from floating to reference.""" |
|
235
|
|
|
transform = _matrix_to_itk_transform(matrix) |
|
236
|
|
|
transform.WriteTransform(str(tfm_path)) |
|
237
|
|
|
|
|
238
|
|
|
|
|
239
|
|
|
def _matrix_to_itk_transform(matrix, dimensions=3): |
|
240
|
|
|
matrix = _to_itk_convention(matrix) |
|
241
|
|
|
rotation = matrix[:dimensions, :dimensions].ravel().tolist() |
|
242
|
|
|
translation = matrix[:dimensions, 3].tolist() |
|
243
|
|
|
transform = sitk.AffineTransform(rotation, translation) |
|
244
|
|
|
return transform |
|
245
|
|
|
|
|
246
|
|
|
|
|
247
|
|
|
def _read_niftyreg_matrix(trsf_path): |
|
248
|
|
|
"""Read a NiftyReg matrix and return it as a NumPy array""" |
|
249
|
|
|
matrix = np.loadtxt(trsf_path) |
|
250
|
|
|
matrix = np.linalg.inv(matrix) |
|
251
|
|
|
return torch.as_tensor(matrix) |
|
252
|
|
|
|
|
253
|
|
|
|
|
254
|
|
|
def _write_niftyreg_matrix(matrix, txt_path): |
|
255
|
|
|
"""Write an affine transform in NiftyReg's .txt format (ref -> flo)""" |
|
256
|
|
|
matrix = np.linalg.inv(matrix) |
|
257
|
|
|
np.savetxt(txt_path, matrix, fmt='%.8f') |
|
258
|
|
|
|
|
259
|
|
|
|
|
260
|
|
|
def get_rotation_and_spacing_from_affine( |
|
261
|
|
|
affine: np.ndarray, |
|
262
|
|
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
263
|
|
|
# From https://github.com/nipy/nibabel/blob/master/nibabel/orientations.py |
|
264
|
|
|
rotation_zoom = affine[:3, :3] |
|
265
|
|
|
spacing = np.sqrt(np.sum(rotation_zoom * rotation_zoom, axis=0)) |
|
266
|
|
|
rotation = rotation_zoom / spacing |
|
267
|
|
|
return rotation, spacing |
|
268
|
|
|
|
|
269
|
|
|
|
|
270
|
|
|
def nib_to_sitk( |
|
271
|
|
|
data: TypeData, |
|
272
|
|
|
affine: TypeData, |
|
273
|
|
|
force_3d: bool = False, |
|
274
|
|
|
force_4d: bool = False, |
|
275
|
|
|
) -> sitk.Image: |
|
276
|
|
|
"""Create a SimpleITK image from a tensor and a 4x4 affine matrix.""" |
|
277
|
|
|
if data.ndim != 4: |
|
278
|
|
|
shape = tuple(data.shape) |
|
279
|
|
|
raise ValueError(f'Input must be 4D, but has shape {shape}') |
|
280
|
|
|
# Possibilities |
|
281
|
|
|
# (1, w, h, 1) |
|
282
|
|
|
# (c, w, h, 1) |
|
283
|
|
|
# (1, w, h, 1) |
|
284
|
|
|
# (c, w, h, d) |
|
285
|
|
|
array = np.asarray(data) |
|
286
|
|
|
affine = np.asarray(affine).astype(np.float64) |
|
287
|
|
|
|
|
288
|
|
|
is_multichannel = array.shape[0] > 1 and not force_4d |
|
289
|
|
|
is_2d = array.shape[3] == 1 and not force_3d |
|
290
|
|
|
if is_2d: |
|
291
|
|
|
array = array[..., 0] |
|
292
|
|
|
if not is_multichannel and not force_4d: |
|
293
|
|
|
array = array[0] |
|
294
|
|
|
array = array.transpose() # (W, H, D, C) or (W, H, D) |
|
295
|
|
|
image = sitk.GetImageFromArray(array, isVector=is_multichannel) |
|
296
|
|
|
|
|
297
|
|
|
origin, spacing, direction = get_sitk_metadata_from_ras_affine( |
|
298
|
|
|
affine, |
|
299
|
|
|
is_2d=is_2d, |
|
300
|
|
|
) |
|
301
|
|
|
image.SetOrigin(origin) # should I add a 4th value if force_4d? |
|
302
|
|
|
image.SetSpacing(spacing) |
|
303
|
|
|
image.SetDirection(direction) |
|
304
|
|
|
|
|
305
|
|
|
if data.ndim == 4: |
|
306
|
|
|
assert image.GetNumberOfComponentsPerPixel() == data.shape[0] |
|
307
|
|
|
num_spatial_dims = 2 if is_2d else 3 |
|
308
|
|
|
assert image.GetSize() == data.shape[1:1 + num_spatial_dims] |
|
309
|
|
|
|
|
310
|
|
|
return image |
|
311
|
|
|
|
|
312
|
|
|
|
|
313
|
|
|
def sitk_to_nib( |
|
314
|
|
|
image: sitk.Image, |
|
315
|
|
|
keepdim: bool = False, |
|
316
|
|
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
317
|
|
|
data = sitk.GetArrayFromImage(image).transpose() |
|
318
|
|
|
data = check_uint_to_int(data) |
|
319
|
|
|
num_components = image.GetNumberOfComponentsPerPixel() |
|
320
|
|
|
if num_components == 1: |
|
321
|
|
|
data = data[np.newaxis] # add channels dimension |
|
322
|
|
|
input_spatial_dims = image.GetDimension() |
|
323
|
|
|
if input_spatial_dims == 2: |
|
324
|
|
|
data = data[..., np.newaxis] |
|
325
|
|
|
elif input_spatial_dims == 4: # probably a bad NIfTI (1, sx, sy, sz, c) |
|
326
|
|
|
# Try to fix it |
|
327
|
|
|
num_components = data.shape[-1] |
|
328
|
|
|
data = data[0] |
|
329
|
|
|
data = data.transpose(3, 0, 1, 2) |
|
330
|
|
|
input_spatial_dims = 3 |
|
331
|
|
|
if not keepdim: |
|
332
|
|
|
data = ensure_4d(data, num_spatial_dims=input_spatial_dims) |
|
333
|
|
|
assert data.shape[0] == num_components |
|
334
|
|
|
affine = get_ras_affine_from_sitk(image) |
|
335
|
|
|
return data, affine |
|
336
|
|
|
|
|
337
|
|
|
|
|
338
|
|
|
def get_ras_affine_from_sitk( |
|
339
|
|
|
sitk_object: Union[sitk.Image, sitk.ImageFileReader], |
|
340
|
|
|
) -> np.ndarray: |
|
341
|
|
|
spacing = np.array(sitk_object.GetSpacing()) |
|
342
|
|
|
direction_lps = np.array(sitk_object.GetDirection()) |
|
343
|
|
|
origin_lps = np.array(sitk_object.GetOrigin()) |
|
344
|
|
|
direction_length = len(direction_lps) |
|
345
|
|
|
if direction_length == 9: |
|
346
|
|
|
rotation_lps = direction_lps.reshape(3, 3) |
|
347
|
|
|
elif direction_length == 4: # ignore last dimension if 2D (1, W, H, 1) |
|
348
|
|
|
rotation_lps_2d = direction_lps.reshape(2, 2) |
|
349
|
|
|
rotation_lps = np.eye(3) |
|
350
|
|
|
rotation_lps[:2, :2] = rotation_lps_2d |
|
351
|
|
|
spacing = np.append(spacing, 1) |
|
352
|
|
|
origin_lps = np.append(origin_lps, 0) |
|
353
|
|
|
elif direction_length == 16: # probably a bad NIfTI. Let's try to fix it |
|
354
|
|
|
rotation_lps = direction_lps.reshape(4, 4)[:3, :3] |
|
355
|
|
|
spacing = spacing[:-1] |
|
356
|
|
|
origin_lps = origin_lps[:-1] |
|
357
|
|
|
rotation_ras = np.dot(FLIPXY_33, rotation_lps) |
|
|
|
|
|
|
358
|
|
|
rotation_ras_zoom = rotation_ras * spacing |
|
359
|
|
|
translation_ras = np.dot(FLIPXY_33, origin_lps) |
|
360
|
|
|
affine = np.eye(4) |
|
361
|
|
|
affine[:3, :3] = rotation_ras_zoom |
|
362
|
|
|
affine[:3, 3] = translation_ras |
|
363
|
|
|
return affine |
|
364
|
|
|
|
|
365
|
|
|
|
|
366
|
|
|
def get_sitk_metadata_from_ras_affine( |
|
367
|
|
|
affine: np.ndarray, |
|
368
|
|
|
is_2d: bool = False, |
|
369
|
|
|
lps: bool = True, |
|
370
|
|
|
) -> Tuple[TypeTripletFloat, TypeTripletFloat, TypeDirection]: |
|
371
|
|
|
direction_ras, spacing_array = get_rotation_and_spacing_from_affine(affine) |
|
372
|
|
|
origin_ras = affine[:3, 3] |
|
373
|
|
|
origin_lps = np.dot(FLIPXY_33, origin_ras) |
|
374
|
|
|
direction_lps = np.dot(FLIPXY_33, direction_ras) |
|
375
|
|
|
if is_2d: # ignore orientation if 2D (1, W, H, 1) |
|
376
|
|
|
direction_lps = np.diag((-1, -1)).astype(np.float64) |
|
377
|
|
|
direction_ras = np.diag((1, 1)).astype(np.float64) |
|
378
|
|
|
origin_array = origin_lps if lps else origin_ras |
|
379
|
|
|
direction_array = direction_lps if lps else direction_ras |
|
380
|
|
|
direction_array = direction_array.flatten() |
|
381
|
|
|
# The following are to comply with typing hints |
|
382
|
|
|
# (there must be prettier ways to do this) |
|
383
|
|
|
ox, oy, oz = origin_array |
|
384
|
|
|
sx, sy, sz = spacing_array |
|
385
|
|
|
if is_2d: |
|
386
|
|
|
d1, d2, d3, d4 = direction_array |
|
387
|
|
|
direction = d1, d2, d3, d4 |
|
388
|
|
|
else: |
|
389
|
|
|
d1, d2, d3, d4, d5, d6, d7, d8, d9 = direction_array |
|
390
|
|
|
direction = d1, d2, d3, d4, d5, d6, d7, d8, d9 |
|
391
|
|
|
origin = ox, oy, oz |
|
392
|
|
|
spacing = sx, sy, sz |
|
393
|
|
|
return origin, spacing, direction |
|
394
|
|
|
|
|
395
|
|
|
|
|
396
|
|
|
def ensure_4d(tensor: TypeData, num_spatial_dims=None) -> TypeData: |
|
397
|
|
|
# I wish named tensors were properly supported in PyTorch |
|
398
|
|
|
tensor = torch.as_tensor(tensor) |
|
399
|
|
|
num_dimensions = tensor.ndim |
|
400
|
|
|
if num_dimensions == 4: |
|
401
|
|
|
pass |
|
402
|
|
|
elif num_dimensions == 5: # hope (W, H, D, 1, C) |
|
403
|
|
|
if tensor.shape[-2] == 1: |
|
404
|
|
|
tensor = tensor[..., 0, :] |
|
405
|
|
|
tensor = tensor.permute(3, 0, 1, 2) |
|
406
|
|
|
else: |
|
407
|
|
|
raise ValueError('5D is not supported for shape[-2] > 1') |
|
408
|
|
|
elif num_dimensions == 2: # assume 2D monochannel (W, H) |
|
409
|
|
|
tensor = tensor[np.newaxis, ..., np.newaxis] # (1, W, H, 1) |
|
410
|
|
|
elif num_dimensions == 3: # 2D multichannel or 3D monochannel? |
|
411
|
|
|
if num_spatial_dims == 2: |
|
412
|
|
|
tensor = tensor[..., np.newaxis] # (C, W, H, 1) |
|
413
|
|
|
elif num_spatial_dims == 3: # (W, H, D) |
|
414
|
|
|
tensor = tensor[np.newaxis] # (1, W, H, D) |
|
415
|
|
|
else: # try to guess |
|
416
|
|
|
shape = tensor.shape |
|
417
|
|
|
maybe_rgb = 3 in (shape[0], shape[-1]) |
|
418
|
|
|
if maybe_rgb: |
|
419
|
|
|
if shape[-1] == 3: # (W, H, 3) |
|
420
|
|
|
tensor = tensor.permute(2, 0, 1) # (3, W, H) |
|
421
|
|
|
tensor = tensor[..., np.newaxis] # (3, W, H, 1) |
|
422
|
|
|
else: # (W, H, D) |
|
423
|
|
|
tensor = tensor[np.newaxis] # (1, W, H, D) |
|
424
|
|
|
else: |
|
425
|
|
|
message = ( |
|
426
|
|
|
f'{num_dimensions}D images not supported yet. Please create an' |
|
427
|
|
|
f' issue in {REPO_URL} if you would like support for them' |
|
428
|
|
|
) |
|
429
|
|
|
raise ValueError(message) |
|
430
|
|
|
assert tensor.ndim == 4 |
|
431
|
|
|
return tensor |
|
432
|
|
|
|
|
433
|
|
|
|
|
434
|
|
|
def check_uint_to_int(array): |
|
435
|
|
|
# This is because PyTorch won't take uint16 nor uint32 |
|
436
|
|
|
if array.dtype == np.uint16: |
|
437
|
|
|
return array.astype(np.int32) |
|
438
|
|
|
if array.dtype == np.uint32: |
|
439
|
|
|
return array.astype(np.int64) |
|
440
|
|
|
return array |
|
441
|
|
|
|