Passed
Pull Request — master (#257)
by Fernando
01:05
created

torchio.data.image.Image.__init__()   C

Complexity

Conditions 10

Size

Total Lines 48
Code Lines 37

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 10
eloc 37
nop 9
dl 0
loc 48
rs 5.9999
c 0
b 0
f 0

How to fix   Complexity    Many Parameters   

Complexity

Complex classes like torchio.data.image.Image.__init__() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
import warnings
2
from pathlib import Path
3
from typing import Any, Dict, Tuple, Optional
4
5
import torch
6
import humanize
7
import numpy as np
8
import nibabel as nib
9
import SimpleITK as sitk
10
11
from ..utils import (
12
    nib_to_sitk,
13
    get_rotation_and_spacing_from_affine,
14
    get_stem,
15
    ensure_4d,
16
)
17
from ..torchio import (
18
    TypeData,
19
    TypePath,
20
    TypeTripletInt,
21
    TypeTripletFloat,
22
    DATA,
23
    TYPE,
24
    AFFINE,
25
    PATH,
26
    STEM,
27
    INTENSITY,
28
    LABEL,
29
)
30
from .io import read_image, write_image
31
32
33
PROTECTED_KEYS = DATA, AFFINE, TYPE, PATH, STEM
34
35
36
class Image(dict):
37
    r"""TorchIO image.
38
39
    For information about medical image orientation, check out `NiBabel docs`_,
40
    the `3D Slicer wiki`_, `Graham Wideman's website`_, `FSL docs`_ or
41
    `SimpleITK docs`_.
42
43
    Args:
44
        path: Path to a file that can be read by
45
            :mod:`SimpleITK` or :mod:`nibabel`, or to a directory containing
46
            DICOM files. If :py:attr:`tensor` is given, the data in
47
            :py:attr:`path` will not be read. The data is expected to be 2D or
48
            3D, and may have multiple channels (see :attr:`num_spatial_dims` and
49
            :attr:`channels_last`).
50
        type: Type of image, such as :attr:`torchio.INTENSITY` or
51
            :attr:`torchio.LABEL`. This will be used by the transforms to
52
            decide whether to apply an operation, or which interpolation to use
53
            when resampling. For example, `preprocessing`_ and `augmentation`_
54
            intensity transforms will only be applied to images with type
55
            :attr:`torchio.INTENSITY`. Spatial transforms will be applied to
56
            all types, and nearest neighbor interpolation is always used to
57
            resample images with type :attr:`torchio.LABEL`.
58
            The type :attr:`torchio.SAMPLING_MAP` may be used with instances of
59
            :py:class:`~torchio.data.sampler.weighted.WeightedSampler`.
60
        tensor: If :py:attr:`path` is not given, :attr:`tensor` must be a 4D
61
            :py:class:`torch.Tensor` or NumPy array with dimensions
62
            :math:`(C, D, H, W)`. If it is not 4D, TorchIO will try to guess
63
            the dimensions meanings. If 2D, the shape will be interpreted as
64
            :math:`(H, W)`. If 3D, the number of spatial dimensions should be
65
            determined in :attr:`num_spatial_dims`. If :attr:`num_spatial_dims`
66
            is not given and the shape is 3 along the first or last dimensions,
67
            it will be interpreted as a multichannel 2D image. Otherwise, it
68
            be interpreted as a 3D image with a single channel.
69
        affine: If :attr:`path` is not given, :attr:`affine` must be a
70
            :math:`4 \times 4` NumPy array. If ``None``, :attr:`affine` is an
71
            identity matrix.
72
        check_nans: If ``True``, issues a warning if NaNs are found
73
            in the image. If ``False``, images will not be checked for the
74
            presence of NaNs.
75
        num_spatial_dims: If ``2`` and the input tensor has 3 dimensions, it
76
            will be interpreted as a multichannel 2D image. If ``3`` and the
77
            input has 3 dimensions, it will be interpreted as a
78
            single-channel 3D volume.
79
        channels_last: If ``True``, the last dimension of the input will be
80
            interpreted as the channels. Defaults to ``True`` if :attr:`path` is
81
            given and ``False`` otherwise.
82
        **kwargs: Items that will be added to the image dictionary, e.g.
83
            acquisition parameters.
84
85
    Example:
86
        >>> import torch
87
        >>> import torchio
88
        >>> # Loading from a file
89
        >>> t1_image = torchio.Image('t1.nii.gz', type=torchio.INTENSITY)
90
        >>> label_image = torchio.Image('t1_seg.nii.gz', type=torchio.LABEL)
91
        >>> image = torchio.Image(tensor=torch.rand(3, 4, 5))
92
        >>> image = torchio.Image('safe_image.nrrd', check_nans=False)
93
        >>> data, affine = image.data, image.affine
94
        >>> affine.shape
95
        (4, 4)
96
        >>> image.data is image[torchio.DATA]
97
        True
98
        >>> image.data is image.tensor
99
        True
100
        >>> type(image.data)
101
        torch.Tensor
102
103
    TorchIO images are `lazy loaders`_, i.e. the data is only loaded from disk
104
    when needed.
105
106
    Example:
107
        >>> import torchio
108
        >>> image = torchio.Image('t1.nii.gz')
109
        >>> image  # not loaded yet
110
        Image(path: t1.nii.gz; type: intensity)
111
        >>> times_two = 2 * image.data  # data is loaded and cached here
112
        >>> image
113
        Image(shape: (1, 256, 256, 176); spacing: (1.00, 1.00, 1.00); orientation: PIR+; memory: 44.0 MiB; type: intensity)
114
        >>> image.save('doubled_image.nii.gz')
115
116
    .. _lazy loaders: https://en.wikipedia.org/wiki/Lazy_loading
117
    .. _preprocessing: https://torchio.readthedocs.io/transforms/preprocessing.html#intensity
118
    .. _augmentation: https://torchio.readthedocs.io/transforms/augmentation.html#intensity
119
    .. _NiBabel docs: https://nipy.org/nibabel/image_orientation.html
120
    .. _3D Slicer wiki: https://www.slicer.org/wiki/Coordinate_systems
121
    .. _FSL docs: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
122
    .. _SimpleITK docs: https://simpleitk.readthedocs.io/en/master/fundamentalConcepts.html
123
    .. _Graham Wideman's website: http://www.grahamwideman.com/gw/brain/orientation/orientterms.htm
124
    """
125
    def __init__(
126
            self,
127
            path: Optional[TypePath] = None,
128
            type: str = None,
129
            tensor: Optional[TypeData] = None,
130
            affine: Optional[TypeData] = None,
131
            check_nans: bool = True,
132
            num_spatial_dims: Optional[int] = None,
133
            channels_last: Optional[bool] = None,
134
            **kwargs: Dict[str, Any],
135
            ):
136
        self.check_nans = check_nans
137
        self.num_spatial_dims = num_spatial_dims
138
139
        if type is None:
140
            warnings.warn(
141
                'Not specifying the image type is deprecated and will be'
142
                ' mandatory in the future. You can probably use ScalarImage or'
143
                ' LabelMap instead'
144
            )
145
            type = INTENSITY
146
147
        if path is None and tensor is None:
148
            raise ValueError('A value for path or tensor must be given')
149
        self._loaded = False
150
151
        # Number of channels are typically stored in the last dimensions in disk
152
        # But if a tensor is given, the channels should be in the first dim
153
        if channels_last is None:
154
            channels_last = path is not None
155
        self.channels_last = channels_last
156
157
        tensor = self.parse_tensor(tensor)
158
        affine = self.parse_affine(affine)
159
        if tensor is not None:
160
            self[DATA] = tensor
161
            self[AFFINE] = affine
162
            self._loaded = True
163
        for key in PROTECTED_KEYS:
164
            if key in kwargs:
165
                message = f'Key "{key}" is reserved. Use a different one'
166
                raise ValueError(message)
167
168
        super().__init__(**kwargs)
169
        self.path = self._parse_path(path)
170
        self[PATH] = '' if self.path is None else str(self.path)
171
        self[STEM] = '' if self.path is None else get_stem(self.path)
172
        self[TYPE] = type
173
174
    def __repr__(self):
175
        properties = []
176
        if self._loaded:
177
            properties.extend([
178
                f'shape: {self.shape}',
179
                f'spacing: {self.get_spacing_string()}',
180
                f'orientation: {"".join(self.orientation)}+',
181
                f'memory: {humanize.naturalsize(self.memory, binary=True)}',
182
            ])
183
        else:
184
            properties.append(f'path: "{self.path}"')
185
        properties.append(f'type: {self.type}')
186
        properties = '; '.join(properties)
187
        string = f'{self.__class__.__name__}({properties})'
188
        return string
189
190
    def __getitem__(self, item):
191
        if item in (DATA, AFFINE):
192
            if item not in self:
193
                self._load()
194
        return super().__getitem__(item)
195
196
    def __array__(self):
197
        return self[DATA].numpy()
198
199
    def __copy__(self):
200
        kwargs = dict(
201
            tensor=self.data,
202
            affine=self.affine,
203
            type=self.type,
204
            path=self.path,
205
            channels_last=False,
206
        )
207
        for key, value in self.items():
208
            if key in PROTECTED_KEYS: continue
209
            kwargs[key] = value  # should I copy? deepcopy?
210
        return self.__class__(**kwargs)
211
212
    @property
213
    def data(self):
214
        return self[DATA]
215
216
    @property
217
    def tensor(self):
218
        return self.data
219
220
    @property
221
    def affine(self):
222
        return self[AFFINE]
223
224
    @property
225
    def type(self):
226
        return self[TYPE]
227
228
    @property
229
    def shape(self) -> Tuple[int, int, int, int]:
230
        return tuple(self.data.shape)
231
232
    @property
233
    def spatial_shape(self) -> TypeTripletInt:
234
        return self.shape[1:]
235
236
    @property
237
    def orientation(self):
238
        return nib.aff2axcodes(self.affine)
239
240
    @property
241
    def spacing(self):
242
        _, spacing = get_rotation_and_spacing_from_affine(self.affine)
243
        return tuple(spacing)
244
245
    @property
246
    def memory(self):
247
        return np.prod(self.shape) * 4  # float32, i.e. 4 bytes per voxel
248
249
    def axis_name_to_index(self, axis: str):
250
        """Convert an axis name to an axis index.
251
252
        Args:
253
            axis: Possible inputs are ``'Left'``, ``'Right'``, ``'Anterior'``,
254
            ``'Posterior'``, ``'Inferior'``, ``'Superior'``. Lower-case versions
255
            and first letters are also valid, as only the first letter will be
256
            used.
257
258
        .. note:: If you are working with animals, you should probably use
259
            ``'Superior'``, ``'Inferior'``, ``'Anterior'`` and ``'Posterior'``
260
            for ``'Dorsal'``, ``'Ventral'``, ``'Rostral'`` and ``'Caudal'``,
261
            respectively.
262
        """
263
        if not isinstance(axis, str):
264
            raise ValueError('Axis must be a string')
265
        axis = axis[0].upper()
266
267
        # Generally, TorchIO tensors are (C, D, H, W)
268
        if axis == 'H':
269
            return -2
270
        elif axis == 'W':
271
            return -1
272
        else:
273
            try:
274
                index = self.orientation.index(axis)
275
            except ValueError:
276
                index = self.orientation.index(self.flip_axis(axis))
277
            # Return negative indices so that it does not matter whether we
278
            # refer to spatial dimensions or not
279
            index = -4 + index
280
            return index
281
282
    @staticmethod
283
    def flip_axis(axis):
284
        if axis == 'R': return 'L'
285
        elif axis == 'L': return 'R'
286
        elif axis == 'A': return 'P'
287
        elif axis == 'P': return 'A'
288
        elif axis == 'I': return 'S'
289
        elif axis == 'S': return 'I'
290
        else:
291
            message = (
292
                f'Axis not understood. Please use a value in {tuple("LRAPIS")}'
293
            )
294
            raise ValueError(message)
295
296
    def get_spacing_string(self):
297
        strings = [f'{n:.2f}' for n in self.spacing]
298
        string = f'({", ".join(strings)})'
299
        return string
300
301
    @staticmethod
302
    def _parse_path(path: TypePath) -> Path:
303
        if path is None:
304
            return None
305
        try:
306
            path = Path(path).expanduser()
307
        except TypeError:
308
            message = f'Conversion to path not possible for variable: {path}'
309
            raise TypeError(message)
310
        if not (path.is_file() or path.is_dir()):  # might be a dir with DICOM
311
            raise FileNotFoundError(f'File not found: {path}')
312
        return path
313
314
    def parse_tensor(self, tensor: TypeData) -> torch.Tensor:
315
        if tensor is None:
316
            return None
317
        if isinstance(tensor, np.ndarray):
318
            tensor = torch.from_numpy(tensor)
319
        tensor = self.parse_tensor_shape(tensor)
320
        if self.check_nans and torch.isnan(tensor).any():
321
            warnings.warn(f'NaNs found in tensor')
322
        return tensor
323
324
    def parse_tensor_shape(self, tensor: torch.Tensor) -> torch.Tensor:
325
        return ensure_4d(tensor, self.channels_last, self.num_spatial_dims)
326
327
    @staticmethod
328
    def parse_affine(affine: np.ndarray) -> np.ndarray:
329
        if affine is None:
330
            return np.eye(4)
331
        if not isinstance(affine, np.ndarray):
332
            raise TypeError(f'Affine must be a NumPy array, not {type(affine)}')
333
        if affine.shape != (4, 4):
334
            raise ValueError(f'Affine shape must be (4, 4), not {affine.shape}')
335
        return affine
336
337
    def _load(self) -> Tuple[torch.Tensor, np.ndarray]:
338
        r"""Load the image from disk.
339
340
        Returns:
341
            Tuple containing a 4D tensor of size :math:`(C, D, H, W)` and a 2D
342
            :math:`4 \times 4` affine matrix to convert voxel indices to world
343
            coordinates.
344
        """
345
        if self._loaded:
346
            return
347
        tensor, affine = read_image(self.path)
348
        tensor = self.parse_tensor_shape(tensor)
349
350
        if self.check_nans and torch.isnan(tensor).any():
351
            warnings.warn(f'NaNs found in file "{self.path}"')
352
        self[DATA] = tensor
353
        self[AFFINE] = affine
354
        self._loaded = True
355
356
    def save(self, path, squeeze=True, channels_last=True):
357
        """Save image to disk.
358
359
        Args:
360
            path: String or instance of :py:class:`pathlib.Path`.
361
            squeeze: If ``True``, the singleton dimensions will be removed
362
                before saving.
363
            channels_last: If ``True``, the channels will be saved in the last
364
                dimension.
365
        """
366
        write_image(
367
            self[DATA],
368
            self[AFFINE],
369
            path,
370
            squeeze=squeeze,
371
            channels_last=channels_last,
372
        )
373
374
    def is_2d(self) -> bool:
375
        return self.shape[-3] == 1
376
377
    def numpy(self) -> np.ndarray:
378
        """Get a NumPy array containing the image data."""
379
        return np.asarray(self)
380
381
    def as_sitk(self) -> sitk.Image:
382
        """Get the image as an instance of :py:class:`sitk.Image`."""
383
        return nib_to_sitk(self[DATA], self[AFFINE])
384
385
    def get_center(self, lps: bool = False) -> TypeTripletFloat:
386
        """Get image center in RAS+ or LPS+ coordinates.
387
388
        Args:
389
            lps: If ``True``, the coordinates will be in LPS+ orientation, i.e.
390
                the first dimension grows towards the left, etc. Otherwise, the
391
                coordinates will be in RAS+ orientation.
392
        """
393
        size = np.array(self.spatial_shape)
394
        center_index = (size - 1) / 2
395
        r, a, s = nib.affines.apply_affine(self.affine, center_index)
396
        if lps:
397
            return (-r, -a, s)
398
        else:
399
            return (r, a, s)
400
401
    def set_check_nans(self, check_nans: bool):
402
        self.check_nans = check_nans
403
404
    def crop(self, index_ini: TypeTripletInt, index_fin: TypeTripletInt):
405
        new_origin = nib.affines.apply_affine(self.affine, index_ini)
406
        new_affine = self.affine.copy()
407
        new_affine[:3, 3] = new_origin
408
        i0, j0, k0 = index_ini
409
        i1, j1, k1 = index_fin
410
        patch = self.data[:, i0:i1, j0:j1, k0:k1].clone()
411
        kwargs = dict(
412
            tensor=patch,
413
            affine=new_affine,
414
            type=self.type,
415
            path=self.path,
416
            channels_last=False,
417
        )
418
        for key, value in self.items():
419
            if key in PROTECTED_KEYS: continue
420
            kwargs[key] = value  # should I copy? deepcopy?
421
        return self.__class__(**kwargs)
422
423
424
class ScalarImage(Image):
425
    """Alias for :py:class:`~torchio.Image` of type :py:attr:`torchio.INTENSITY`.
426
427
    Example:
428
        >>> import torch
429
        >>> import torchio
430
        >>> image = torchio.ScalarImage('t1.nii.gz')  # loading from a file
431
        >>> image = torchio.ScalarImage(tensor=torch.rand(128, 128, 68))  # from tensor
432
        >>> data, affine = image.data, image.affine
433
        >>> affine.shape
434
        (4, 4)
435
        >>> image.data is image[torchio.DATA]
436
        True
437
        >>> image.data is image.tensor
438
        True
439
        >>> type(image.data)
440
        torch.Tensor
441
442
    See :py:class:`~torchio.Image` for more information.
443
444
    Raises:
445
        ValueError: A :py:attr:`type` is used for instantiation.
446
    """
447
    def __init__(self, *args, **kwargs):
448
        if 'type' in kwargs and kwargs['type'] != INTENSITY:
449
            raise ValueError('Type of ScalarImage is always torchio.INTENSITY')
450
        kwargs.update({'type': INTENSITY})
451
        super().__init__(*args, **kwargs)
452
453
454
class LabelMap(Image):
455
    """Alias for :py:class:`~torchio.Image` of type :py:attr:`torchio.LABEL`.
456
457
    Example:
458
        >>> import torch
459
        >>> import torchio
460
        >>> labels = torchio.LabelMap(tensor=torch.rand(128, 128, 68) > 0.5)
461
        >>> labels = torchio.LabelMap('t1_seg.nii.gz')  # loading from a file
462
463
    See :py:class:`~torchio.data.image.Image` for more information.
464
465
    Raises:
466
        ValueError: If a value for :py:attr:`type` is given.
467
    """
468
    def __init__(self, *args, **kwargs):
469
        if 'type' in kwargs and kwargs['type'] != LABEL:
470
            raise ValueError('Type of LabelMap is always torchio.LABEL')
471
        kwargs.update({'type': LABEL})
472
        super().__init__(*args, **kwargs)
473