Passed
Pull Request — master (#353)
by Fernando
01:16
created

Compose.inverse()   A

Complexity

Conditions 1

Size

Total Lines 7
Code Lines 6

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 6
nop 1
dl 0
loc 7
rs 10
c 0
b 0
f 0
1
from typing import Union, Sequence
2
3
import torch
4
import numpy as np
5
from torchvision.transforms import Compose as PyTorchCompose
6
7
from ...data.subject import Subject
8
from .. import Transform
9
from . import RandomTransform
10
11
12
class Compose(Transform):
13
    """Compose several transforms together.
14
15
    Args:
16
        transforms: Sequence of instances of
17
            :py:class:`~torchio.transforms.transform.Transform`.
18
        p: Probability that this transform will be applied.
19
20
    .. note::
21
        This is a thin wrapper of :py:class:`torchvision.transforms.Compose`.
22
    """
23
    def __init__(self, transforms: Sequence[Transform], p: float = 1):
24
        super().__init__(p=p)
25
        self.transform = PyTorchCompose(transforms)
26
        self.transforms = self.transform.transforms
27
28
    def __len__(self):
29
        return len(self.transforms)
30
31
    def __getitem__(self, index):
32
        return self.transforms[index]
33
34
    def __repr__(self):
35
        return self.transform.__repr__()
36
37
    def apply_transform(self, subject: Subject):
38
        return self.transform(subject)
39
40
    def is_invertible(self):
41
        return all(t.is_invertible() for t in self.transforms)
42
43
    def inverse(self):
44
        transforms = [
45
            transform.inverse()
46
            for transform in self.transforms
47
            if transform.is_invertible()
48
        ]
49
        return Compose(reversed(transforms))
50
51
52
class OneOf(RandomTransform):
53
    """Apply only one of the given transforms.
54
55
    Args:
56
        transforms: Dictionary with instances of
57
            :py:class:`~torchio.transforms.transform.Transform` as keys and
58
            probabilities as values. Probabilities are normalized so they sum
59
            to one. If a sequence is given, the same probability will be
60
            assigned to each transform.
61
        p: Probability that this transform will be applied.
62
63
    Example:
64
        >>> import torchio as tio
65
        >>> colin = tio.datasets.Colin27()
66
        >>> transforms_dict = {
67
        ...     tio.RandomAffine(): 0.75,
68
        ...     tio.RandomElasticDeformation(): 0.25,
69
        ... }  # Using 3 and 1 as probabilities would have the same effect
70
        >>> transform = torchio.transforms.OneOf(transforms_dict)
71
        >>> transformed = transform(colin)
72
73
    """
74
    def __init__(
75
            self,
76
            transforms: Union[dict, Sequence[Transform]],
77
            p: float = 1,
78
            ):
79
        super().__init__(p=p)
80
        self.transforms_dict = self._get_transforms_dict(transforms)
81
82
    def apply_transform(self, subject: Subject):
83
        weights = torch.Tensor(list(self.transforms_dict.values()))
84
        index = torch.multinomial(weights, 1)
85
        transforms = list(self.transforms_dict.keys())
86
        transform = transforms[index]
87
        transformed = transform(subject)
88
        return transformed
89
90
    def _get_transforms_dict(self, transforms: Union[dict, Sequence]):
91
        if isinstance(transforms, dict):
92
            transforms_dict = dict(transforms)
93
            self._normalize_probabilities(transforms_dict)
94
        else:
95
            try:
96
                p = 1 / len(transforms)
97
            except TypeError as e:
98
                message = (
99
                    'Transforms argument must be a dictionary or a sequence,'
100
                    f' not {type(transforms)}'
101
                )
102
                raise ValueError(message) from e
103
            transforms_dict = {transform: p for transform in transforms}
104
        for transform in transforms_dict:
105
            if not isinstance(transform, Transform):
106
                message = (
107
                    'All keys in transform_dict must be instances of'
108
                    f'torchio.Transform, not "{type(transform)}"'
109
                )
110
                raise ValueError(message)
111
        return transforms_dict
112
113
    @staticmethod
114
    def _normalize_probabilities(transforms_dict: dict):
115
        probabilities = np.array(list(transforms_dict.values()), dtype=float)
116
        if np.any(probabilities < 0):
117
            message = (
118
                'Probabilities must be greater or equal to zero,'
119
                f' not "{probabilities}"'
120
            )
121
            raise ValueError(message)
122
        if np.all(probabilities == 0):
123
            message = (
124
                'At least one probability must be greater than zero,'
125
                f' but they are "{probabilities}"'
126
            )
127
            raise ValueError(message)
128
        for transform, probability in transforms_dict.items():
129
            transforms_dict[transform] = probability / probabilities.sum()
130