Total Complexity | 4 |
Total Lines | 31 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import torch.nn.functional as F # noqa: N812 |
||
2 | |||
3 | from .label_transform import LabelTransform |
||
4 | |||
5 | |||
6 | class OneHot(LabelTransform): |
||
7 | r"""Reencode label maps using one-hot encoding. |
||
8 | |||
9 | Args: |
||
10 | num_classes: See :func:`~torch.nn.functional.one_hot`. |
||
11 | **kwargs: See :class:`~torchio.transforms.Transform` for additional |
||
12 | keyword arguments. |
||
13 | """ |
||
14 | def __init__( |
||
15 | self, |
||
16 | num_classes: int = -1, |
||
17 | **kwargs |
||
18 | ): |
||
19 | super().__init__(**kwargs) |
||
20 | self.num_classes = num_classes |
||
21 | self.args_names = [] |
||
22 | |||
23 | def apply_transform(self, subject): |
||
24 | for image in self.get_images(subject): |
||
25 | assert image.data.ndim == 4 and image.data.shape[0] == 1 |
||
26 | data = image.data.squeeze() |
||
27 | num_classes = -1 if self.num_classes is None else self.num_classes |
||
28 | one_hot = F.one_hot(data.long(), num_classes=num_classes) |
||
29 | image.set_data(one_hot.permute(3, 0, 1, 2).type(data.type())) |
||
30 | return subject |
||
31 |