| Total Complexity | 4 |
| Total Lines | 31 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import torch.nn.functional as F # noqa: N812 |
||
| 2 | |||
| 3 | from .label_transform import LabelTransform |
||
| 4 | |||
| 5 | |||
| 6 | class OneHot(LabelTransform): |
||
| 7 | r"""Reencode label maps using one-hot encoding. |
||
| 8 | |||
| 9 | Args: |
||
| 10 | num_classes: See :func:`~torch.nn.functional.one_hot`. |
||
| 11 | **kwargs: See :class:`~torchio.transforms.Transform` for additional |
||
| 12 | keyword arguments. |
||
| 13 | """ |
||
| 14 | def __init__( |
||
| 15 | self, |
||
| 16 | num_classes: int = -1, |
||
| 17 | **kwargs |
||
| 18 | ): |
||
| 19 | super().__init__(**kwargs) |
||
| 20 | self.num_classes = num_classes |
||
| 21 | self.args_names = [] |
||
| 22 | |||
| 23 | def apply_transform(self, subject): |
||
| 24 | for image in self.get_images(subject): |
||
| 25 | assert image.data.ndim == 4 and image.data.shape[0] == 1 |
||
| 26 | data = image.data.squeeze() |
||
| 27 | num_classes = -1 if self.num_classes is None else self.num_classes |
||
| 28 | one_hot = F.one_hot(data.long(), num_classes=num_classes) |
||
| 29 | image.set_data(one_hot.permute(3, 0, 1, 2).type(data.type())) |
||
| 30 | return subject |
||
| 31 |