| Conditions | 5 | 
| Total Lines | 25 | 
| Code Lines | 19 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
| 1 | import torch | ||
| 21 | def __call__( | ||
| 22 | self, | ||
| 23 | subject: Subject, | ||
| 24 | num_patches: int = None, | ||
| 25 | ) -> Generator[Subject, None, None]: | ||
| 26 | subject.check_consistent_spatial_shape() | ||
| 27 | |||
| 28 | if np.any(self.patch_size > subject.spatial_shape): | ||
| 29 | message = ( | ||
| 30 |                 f'Patch size {tuple(self.patch_size)} cannot be' | ||
| 31 |                 f' larger than image size {tuple(subject.spatial_shape)}' | ||
| 32 | ) | ||
| 33 | raise RuntimeError(message) | ||
| 34 | |||
| 35 | valid_range = subject.spatial_shape - self.patch_size | ||
| 36 | patches_left = num_patches if num_patches is not None else True | ||
| 37 | while patches_left: | ||
| 38 | index_ini = [ | ||
| 39 | torch.randint(x + 1, (1,)).item() | ||
| 40 | for x in valid_range | ||
| 41 | ] | ||
| 42 | index_ini_array = np.asarray(index_ini) | ||
| 43 | yield self.extract_patch(subject, index_ini_array) | ||
| 44 | if num_patches is not None: | ||
| 45 | patches_left -= 1 | ||
| 46 |