1
|
|
|
from torchio.data.image import Image |
2
|
|
|
from typing import Union, Sequence, List |
3
|
|
|
import torch |
4
|
|
|
import numpy as np |
5
|
|
|
from ....data.subject import Subject |
6
|
|
|
from ... import SpatialTransform |
7
|
|
|
from .. import RandomTransform |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class RandomFlip(RandomTransform, SpatialTransform): |
11
|
|
|
"""Reverse the order of elements in an image along the given axes. |
12
|
|
|
|
13
|
|
|
Args: |
14
|
|
|
axes: Index or tuple of indices of the spatial dimensions along which |
15
|
|
|
the image might be flipped. If they are integers, they must be in |
16
|
|
|
``(0, 1, 2)``. Anatomical labels may also be used, such as |
17
|
|
|
``'Left'``, ``'Right'``, ``'Anterior'``, ``'Posterior'``, |
18
|
|
|
``'Inferior'``, ``'Superior'``, ``'Height'`` and ``'Width'``, |
19
|
|
|
``'AP'`` (antero-posterior), ``'lr'`` (lateral), ``'w'`` (width) or |
20
|
|
|
``'i'`` (inferior). Only the first letter of the string will be |
21
|
|
|
used. If the image is 2D, ``'Height'`` and ``'Width'`` may be |
22
|
|
|
used. |
23
|
|
|
flip_probability: Probability that the image will be flipped. This is |
24
|
|
|
computed on a per-axis basis. |
25
|
|
|
**kwargs: See :class:`~torchio.transforms.Transform` for additional |
26
|
|
|
keyword arguments. |
27
|
|
|
|
28
|
|
|
Example: |
29
|
|
|
>>> import torchio as tio |
30
|
|
|
>>> fpg = tio.datasets.FPG() |
31
|
|
|
>>> flip = tio.RandomFlip(axes=('LR',)) # flip along lateral axis only |
32
|
|
|
|
33
|
|
|
.. tip:: It is handy to specify the axes as anatomical labels when the |
34
|
|
|
image orientation is not known. |
35
|
|
|
""" |
36
|
|
|
|
37
|
|
|
def __init__( |
38
|
|
|
self, |
39
|
|
|
axes: Union[int, Sequence[int], str, Sequence[str]] = 0, |
40
|
|
|
flip_probability: float = 0.5, |
41
|
|
|
**kwargs |
42
|
|
|
): |
43
|
|
|
super().__init__(**kwargs) |
44
|
|
|
self.axes = self.parse_axes(axes) |
45
|
|
|
self.flip_probability = self.parse_probability(flip_probability) |
46
|
|
|
|
47
|
|
|
def apply_transform(self, subject: Subject) -> Subject: |
48
|
|
|
potential_axes = self.ensure_axes_indices(subject, self.axes) |
49
|
|
|
axes_to_flip_hot = self.get_params(self.flip_probability) |
50
|
|
|
for i in range(3): |
51
|
|
|
if i not in potential_axes: |
52
|
|
|
axes_to_flip_hot[i] = False |
53
|
|
|
axes, = np.where(axes_to_flip_hot) |
54
|
|
|
axes = axes.tolist() |
55
|
|
|
if not axes: |
56
|
|
|
return subject |
57
|
|
|
|
58
|
|
|
arguments = {'axes': axes} |
59
|
|
|
transform = Flip(**self.add_include_exclude(arguments)) |
60
|
|
|
transformed = transform(subject) |
61
|
|
|
return transformed |
62
|
|
|
|
63
|
|
|
@staticmethod |
64
|
|
|
def get_params(probability: float) -> List[bool]: |
65
|
|
|
return (probability > torch.rand(3)).tolist() |
66
|
|
|
|
67
|
|
|
|
68
|
|
|
class Flip(SpatialTransform): |
69
|
|
|
"""Reverse the order of elements in an image along the given axes. |
70
|
|
|
|
71
|
|
|
Args: |
72
|
|
|
axes: Index or tuple of indices of the spatial dimensions along which |
73
|
|
|
the image will be flipped. See |
74
|
|
|
:class:`~torchio.transforms.augmentation.spatial.random_flip.RandomFlip` |
75
|
|
|
for more information. |
76
|
|
|
**kwargs: See :class:`~torchio.transforms.Transform` for additional |
77
|
|
|
keyword arguments. |
78
|
|
|
|
79
|
|
|
.. tip:: It is handy to specify the axes as anatomical labels when the |
80
|
|
|
image orientation is not known. |
81
|
|
|
""" |
82
|
|
|
|
83
|
|
|
def __init__(self, axes, **kwargs): |
84
|
|
|
super().__init__(**kwargs) |
85
|
|
|
self.axes = self.parse_axes(axes) |
86
|
|
|
self.args_names = ('axes',) |
87
|
|
|
|
88
|
|
|
def apply_transform(self, subject: Subject) -> Subject: |
89
|
|
|
axes = self.ensure_axes_indices(subject, self.axes) |
90
|
|
|
for image in self.get_images(subject): |
91
|
|
|
_flip_image(image, axes) |
92
|
|
|
return subject |
93
|
|
|
|
94
|
|
|
@staticmethod |
95
|
|
|
def is_invertible(): |
96
|
|
|
return True |
97
|
|
|
|
98
|
|
|
def inverse(self): |
99
|
|
|
return self |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
def _flip_image(image: Image, axes: Sequence[int]) -> Image: |
103
|
|
|
spatial_axes = np.array(axes, int) + 1 |
104
|
|
|
data = image.numpy() |
105
|
|
|
data = np.flip(data, axis=spatial_axes) |
106
|
|
|
data = data.copy() # remove negative strides |
107
|
|
|
data = torch.as_tensor(data) |
108
|
|
|
image.set_data(data) |
109
|
|
|
|