|
1
|
|
|
from typing import Optional, Sequence |
|
2
|
|
|
|
|
3
|
|
|
import torch |
|
4
|
|
|
|
|
5
|
|
|
from ....data.image import LabelMap |
|
6
|
|
|
from ....data.subject import Subject |
|
7
|
|
|
from ....transforms.transform import TypeMaskingMethod |
|
8
|
|
|
from ... import IntensityTransform |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
class Mask(IntensityTransform): |
|
12
|
|
|
"""Set voxels outside of mask to a constant value. |
|
13
|
|
|
|
|
14
|
|
|
Args: |
|
15
|
|
|
masking_method: See |
|
16
|
|
|
:class:`~torchio.transforms.preprocessing.intensity.NormalizationTransform`. |
|
17
|
|
|
outside_value: Value to set for all voxels outside of the mask. |
|
18
|
|
|
labels: If a label map is used to generate the mask, |
|
19
|
|
|
sequence of labels to consider. |
|
20
|
|
|
**kwargs: See :class:`~torchio.transforms.Transform` for additional |
|
21
|
|
|
keyword arguments. |
|
22
|
|
|
|
|
23
|
|
|
Example: |
|
24
|
|
|
>>> import torchio as tio |
|
25
|
|
|
>>> subject = tio.datasets.Colin27() |
|
26
|
|
|
>>> subject |
|
27
|
|
|
Colin27(Keys: ('t1', 'head', 'brain'); images: 3) |
|
28
|
|
|
>>> mask = tio.Mask(masking_method='brain') # Use "brain" image to mask |
|
29
|
|
|
>>> transformed = mask(subject) # Set voxels outside of the brain to 0 |
|
30
|
|
|
|
|
31
|
|
|
""" # noqa: E501 |
|
32
|
|
|
def __init__( |
|
33
|
|
|
self, |
|
34
|
|
|
masking_method: TypeMaskingMethod, |
|
35
|
|
|
outside_value: float = 0, |
|
36
|
|
|
labels: Optional[Sequence[int]] = None, |
|
37
|
|
|
**kwargs, |
|
38
|
|
|
): |
|
39
|
|
|
super().__init__(**kwargs) |
|
40
|
|
|
self.masking_method = masking_method |
|
41
|
|
|
self.masking_labels = labels |
|
42
|
|
|
self.outside_value = outside_value |
|
43
|
|
|
|
|
44
|
|
|
def apply_transform(self, subject: Subject) -> Subject: |
|
45
|
|
|
for image in self.get_images(subject): |
|
46
|
|
|
mask_data = self.get_mask_from_masking_method( |
|
47
|
|
|
self.masking_method, |
|
48
|
|
|
subject, |
|
49
|
|
|
image.data, |
|
50
|
|
|
self.masking_labels, |
|
51
|
|
|
) |
|
52
|
|
|
self.apply_masking(image, mask_data) |
|
53
|
|
|
return subject |
|
54
|
|
|
|
|
55
|
|
|
def apply_masking(self, image: LabelMap, mask_data: torch.Tensor) -> None: |
|
56
|
|
|
masked = mask(image.data, mask_data, self.outside_value) |
|
57
|
|
|
image.set_data(masked) |
|
58
|
|
|
|
|
59
|
|
|
|
|
60
|
|
|
def mask( |
|
61
|
|
|
tensor: torch.Tensor, |
|
62
|
|
|
mask: torch.Tensor, |
|
63
|
|
|
outside_value: float, |
|
64
|
|
|
) -> torch.Tensor: |
|
65
|
|
|
array = tensor.clone().numpy() |
|
66
|
|
|
mask = mask.numpy() |
|
67
|
|
|
array[~mask] = outside_value |
|
68
|
|
|
return torch.as_tensor(array) |
|
69
|
|
|
|