|
1
|
|
|
|
|
2
|
|
|
from typing import Union, Tuple, Optional, Dict, Sequence |
|
3
|
|
|
import torch |
|
4
|
|
|
import numpy as np |
|
5
|
|
|
from ....torchio import DATA, TypeData, TypeRangeFloat, TypeNumber, AFFINE, INTENSITY |
|
6
|
|
|
from ....data.subject import Subject |
|
7
|
|
|
from ....data.image import ScalarImage |
|
8
|
|
|
from .. import RandomTransform |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
class RandomLabelsToImage(RandomTransform): |
|
14
|
|
|
MEAN_RANGE = (0.1, 0.9) |
|
15
|
|
|
STD_RANGE = (0.01, 0.1) |
|
16
|
|
|
r"""Generate an image from a segmentation. |
|
17
|
|
|
|
|
18
|
|
|
Based on the work by `Billot et al., A Learning Strategy for |
|
19
|
|
|
Contrast-agnostic MRI Segmentation <https://arxiv.org/abs/2003.01995>`_. |
|
20
|
|
|
|
|
21
|
|
|
Args: |
|
22
|
|
|
label_key: String designating the label map in the sample |
|
23
|
|
|
that will be used to generate the new image. |
|
24
|
|
|
Cannot be set at the same time as :py:attr:`pv_label_keys`. |
|
25
|
|
|
pv_label_keys: Sequence of strings designating the partial-volume (PV) |
|
26
|
|
|
label maps in the sample that will be used to generate the new |
|
27
|
|
|
image. Cannot be set at the same time as :py:attr:`label_key`. |
|
28
|
|
|
image_key: String designating the key to which the new volume will be |
|
29
|
|
|
saved. If this key corresponds to an already existing volume, |
|
30
|
|
|
voxels that have a value of 0 in the label maps will be filled with |
|
31
|
|
|
the corresponding values in the original volume. |
|
32
|
|
|
gaussian_parameters: Dictionary containing the mean and standard |
|
33
|
|
|
deviation for each label. For each value :math:`v`, if a tuple |
|
34
|
|
|
:math:`(a, b)` is provided then :math:`v \sim \mathcal{U}(a, b)`. |
|
35
|
|
|
If no value is given for a label, the value from |
|
36
|
|
|
:py:attr:`default_gaussian_parameters` will be used. |
|
37
|
|
|
default_gaussian_parameters: Dictionary containing the default |
|
38
|
|
|
mean and standard deviation used for all labels that are not |
|
39
|
|
|
defined in :py:attr:`gaussian_parameters`. |
|
40
|
|
|
Default values are ``(0.1, 0.9)`` for the mean and |
|
41
|
|
|
``(0.01, 0.1)`` for the standard deviation. |
|
42
|
|
|
binarize: If ``True``, PV label maps will be binarized. |
|
43
|
|
|
Does not have any effects if not using PV label maps. |
|
44
|
|
|
Binarization is done taking the highest value per voxel |
|
45
|
|
|
in the different PV label maps. |
|
46
|
|
|
p: Probability that this transform will be applied. |
|
47
|
|
|
seed: See :py:class:`~torchio.transforms.augmentation.RandomTransform`. |
|
48
|
|
|
|
|
49
|
|
|
.. note:: It is recommended to blur the new images to make the result more |
|
50
|
|
|
realistic. See |
|
51
|
|
|
:py:class:`~torchio.transforms.augmentation.intensity.random_blur.RandomBlur`. |
|
52
|
|
|
|
|
53
|
|
|
Example: |
|
54
|
|
|
>>> import torchio |
|
55
|
|
|
>>> from torchio import RandomLabelsToImage, DATA, RescaleIntensity, Compose |
|
56
|
|
|
>>> from torchio.datasets import Colin27 |
|
57
|
|
|
>>> colin = Colin27(2008) |
|
58
|
|
|
>>> # Using the default gaussian_parameters |
|
59
|
|
|
>>> transform = RandomLabelsToImage(label_key='cls') |
|
60
|
|
|
>>> # Using custom gaussian_parameters |
|
61
|
|
|
>>> label_values = colin['cls'][DATA].unique().round().long() |
|
62
|
|
|
>>> gaussian_parameters = { |
|
63
|
|
|
... label: { |
|
64
|
|
|
... 'mean': i / len(label_values), |
|
65
|
|
|
... 'std': 0.01 |
|
66
|
|
|
... } |
|
67
|
|
|
... for i, label in enumerate(label_values) |
|
68
|
|
|
... } |
|
69
|
|
|
>>> transform = RandomLabelsToImage(label_key='cls', gaussian_parameters=gaussian_parameters) |
|
70
|
|
|
>>> transformed = transform(colin) # colin has a new key 'image' with the simulated image |
|
71
|
|
|
>>> # Filling holes of the simulated image with the original T1 image |
|
72
|
|
|
>>> rescale_transform = RescaleIntensity((0, 1), (1, 99)) # Rescale intensity before filling holes |
|
73
|
|
|
>>> simulation_transform = RandomLabelsToImage( |
|
74
|
|
|
... label_key='cls', |
|
75
|
|
|
... image_key='t1', |
|
76
|
|
|
... gaussian_parameters={0: {'mean': 0, 'std': 0}} |
|
77
|
|
|
... ) |
|
78
|
|
|
>>> transform = Compose([rescale_transform, simulation_transform]) |
|
79
|
|
|
>>> transformed = transform(colin) # colin's key 't1' has been replaced with the simulated image |
|
80
|
|
|
""" |
|
81
|
|
|
def __init__( |
|
82
|
|
|
self, |
|
83
|
|
|
label_key: Optional[str] = None, |
|
84
|
|
|
pv_label_keys: Optional[Sequence[str]] = None, |
|
85
|
|
|
image_key: str = 'image', |
|
86
|
|
|
gaussian_parameters: Optional[Dict[Union[str, TypeNumber], Dict[str, TypeRangeFloat]]] = None, |
|
87
|
|
|
default_gaussian_parameters: Optional[Dict[str, TypeRangeFloat]] = None, |
|
88
|
|
|
binarize: bool = False, |
|
89
|
|
|
p: float = 1, |
|
90
|
|
|
seed: Optional[int] = None, |
|
91
|
|
|
): |
|
92
|
|
|
super().__init__(p=p, seed=seed) |
|
93
|
|
|
self.label_key, self.pv_label_keys = self.parse_keys(label_key, pv_label_keys) |
|
94
|
|
|
self.default_gaussian_parameters = self.parse_default_gaussian_parameters(default_gaussian_parameters) |
|
95
|
|
|
self.gaussian_parameters = self.parse_gaussian_parameters(gaussian_parameters) |
|
96
|
|
|
self.image_key = image_key |
|
97
|
|
|
self.binarize = binarize |
|
98
|
|
|
|
|
99
|
|
|
@staticmethod |
|
100
|
|
|
def parse_keys(label_key, pv_label_keys): |
|
101
|
|
|
if label_key is not None and pv_label_keys is not None: |
|
102
|
|
|
raise ValueError('"label_key" and "pv_label_keys" can\'t be set at the same time.') |
|
103
|
|
|
if label_key is None and pv_label_keys is None: |
|
104
|
|
|
raise ValueError('One of "label_key" and "pv_label_keys" must be set.') |
|
105
|
|
|
if label_key is not None and not isinstance(label_key, str): |
|
106
|
|
|
raise TypeError(f'"label_key" must be a string, not {label_key}') |
|
107
|
|
|
if pv_label_keys is not None: |
|
108
|
|
|
try: |
|
109
|
|
|
iter(pv_label_keys) |
|
110
|
|
|
except TypeError: |
|
111
|
|
|
raise TypeError(f'"pv_label_keys" must be a sequence of strings, not {pv_label_keys}') |
|
112
|
|
|
for key in pv_label_keys: |
|
113
|
|
|
if not isinstance(key, str): |
|
114
|
|
|
raise TypeError(f'Every key of "pv_label_keys" must be a string, found {key}') |
|
115
|
|
|
pv_label_keys = list(pv_label_keys) |
|
116
|
|
|
|
|
117
|
|
|
return label_key, pv_label_keys |
|
118
|
|
|
|
|
119
|
|
|
def apply_transform(self, sample: Subject) -> dict: |
|
120
|
|
|
random_parameters_images_dict = {} |
|
121
|
|
|
original_image = sample.get(self.image_key) |
|
122
|
|
|
|
|
123
|
|
|
if self.pv_label_keys is not None: |
|
124
|
|
|
label_map, affine = self.parse_pv_label_maps(self.pv_label_keys, sample) |
|
125
|
|
|
n_labels, *image_shape = label_map.shape |
|
126
|
|
|
labels = self.pv_label_keys |
|
127
|
|
|
values = list(range(n_labels)) |
|
128
|
|
|
|
|
129
|
|
|
if self.binarize: |
|
130
|
|
|
# Take label with highest value in voxel |
|
131
|
|
|
max_label, label_map = label_map.max(dim=0) |
|
132
|
|
|
# Remove values where all labels are 0 |
|
133
|
|
|
label_map[max_label == 0] = -1 |
|
134
|
|
|
|
|
135
|
|
|
else: |
|
136
|
|
|
label_map = sample[self.label_key][DATA][0] |
|
|
|
|
|
|
137
|
|
|
affine = sample[self.label_key][AFFINE] |
|
138
|
|
|
image_shape = label_map.shape |
|
139
|
|
|
values = label_map.unique() |
|
140
|
|
|
labels = [int(key) for key in values.round()] |
|
141
|
|
|
|
|
142
|
|
|
tissues = torch.zeros(image_shape) |
|
143
|
|
|
|
|
144
|
|
|
for i, label in enumerate(labels): |
|
145
|
|
|
mean, std = self.get_params(label) |
|
146
|
|
|
if self.pv_label_keys is not None and not self.binarize: |
|
147
|
|
|
mask = label_map[i] |
|
148
|
|
|
else: |
|
149
|
|
|
mask = label_map == values[i] |
|
150
|
|
|
tissues += self.generate_tissue(mask, mean, std) |
|
151
|
|
|
|
|
152
|
|
|
random_parameters_images_dict[label] = { |
|
153
|
|
|
'mean': mean, |
|
154
|
|
|
'std': std |
|
155
|
|
|
} |
|
156
|
|
|
|
|
157
|
|
|
final_image = ScalarImage(affine=affine, tensor=tissues) |
|
158
|
|
|
|
|
159
|
|
|
if original_image is not None: |
|
160
|
|
|
if self.pv_label_keys is not None and not self.binarize: |
|
161
|
|
|
label_map = label_map.sum(dim=0) |
|
162
|
|
|
bg_mask = label_map.unsqueeze(0) <= 0 |
|
163
|
|
|
final_image[DATA][bg_mask] = original_image[DATA][bg_mask] |
|
164
|
|
|
|
|
165
|
|
|
sample.add_image(final_image, self.image_key) |
|
166
|
|
|
sample.add_transform(self, random_parameters_images_dict) |
|
167
|
|
|
return sample |
|
168
|
|
|
|
|
169
|
|
|
def parse_default_gaussian_parameters(self, default_gaussian_parameters): |
|
170
|
|
|
if default_gaussian_parameters is None: |
|
171
|
|
|
return {'mean': self.MEAN_RANGE, 'std': self.STD_RANGE} |
|
172
|
|
|
|
|
173
|
|
|
if list(default_gaussian_parameters.keys()) != ['mean', 'std']: |
|
174
|
|
|
raise KeyError(f'Default gaussian parameters {default_gaussian_parameters.keys()} do not ' |
|
175
|
|
|
f'match {["mean", "std"]}') |
|
176
|
|
|
|
|
177
|
|
|
mean = self.parse_gaussian_parameter(default_gaussian_parameters['mean'], 'mean') |
|
178
|
|
|
std = self.parse_gaussian_parameter(default_gaussian_parameters['std'], 'std') |
|
179
|
|
|
|
|
180
|
|
|
return {'mean': mean, 'std': std} |
|
181
|
|
|
|
|
182
|
|
|
def parse_gaussian_parameters(self, gaussian_parameters): |
|
183
|
|
|
if gaussian_parameters is None: |
|
184
|
|
|
gaussian_parameters = {} |
|
185
|
|
|
|
|
186
|
|
|
if self.pv_label_keys is not None: |
|
187
|
|
|
if not set(self.pv_label_keys).issuperset(gaussian_parameters.keys()): |
|
188
|
|
|
raise KeyError(f'Found keys in gaussian parameters {gaussian_parameters.keys()} ' |
|
189
|
|
|
f'not in pv_label_keys {self.pv_label_keys}') |
|
190
|
|
|
|
|
191
|
|
|
parsed_gaussian_parameters = {} |
|
192
|
|
|
|
|
193
|
|
|
for label_key, dictionary in gaussian_parameters.items(): |
|
194
|
|
|
if 'mean' in dictionary: |
|
195
|
|
|
mean = self.parse_gaussian_parameter(dictionary['mean'], 'mean') |
|
196
|
|
|
else: |
|
197
|
|
|
mean = self.default_gaussian_parameters['mean'] |
|
198
|
|
|
if 'std' in dictionary: |
|
199
|
|
|
std = self.parse_gaussian_parameter(dictionary['std'], 'std') |
|
200
|
|
|
else: |
|
201
|
|
|
std = self.default_gaussian_parameters['std'] |
|
202
|
|
|
parsed_gaussian_parameters.update({label_key: {'mean': mean, 'std': std}}) |
|
203
|
|
|
|
|
204
|
|
|
return parsed_gaussian_parameters |
|
205
|
|
|
|
|
206
|
|
|
@staticmethod |
|
207
|
|
|
def parse_gaussian_parameter( |
|
208
|
|
|
nums_range: TypeRangeFloat, |
|
209
|
|
|
name: str, |
|
210
|
|
|
) -> Tuple[float, float]: |
|
211
|
|
|
if isinstance(nums_range, (int, float)): |
|
212
|
|
|
return nums_range, nums_range |
|
213
|
|
|
|
|
214
|
|
|
if len(nums_range) != 2: |
|
215
|
|
|
raise ValueError( |
|
216
|
|
|
f'If {name} is a sequence,' |
|
217
|
|
|
f' it must be of len 2, not {nums_range}') |
|
218
|
|
|
min_value, max_value = nums_range |
|
219
|
|
|
if min_value > max_value: |
|
220
|
|
|
raise ValueError( |
|
221
|
|
|
f'If {name} is a sequence, the second value must be' |
|
222
|
|
|
f' equal or greater than the first, not {nums_range}') |
|
223
|
|
|
return min_value, max_value |
|
224
|
|
|
|
|
225
|
|
|
@staticmethod |
|
226
|
|
|
def parse_pv_label_maps( |
|
227
|
|
|
pv_label_keys: Sequence[str], |
|
228
|
|
|
sample: dict, |
|
229
|
|
|
) -> (TypeData, TypeData): |
|
230
|
|
|
try: |
|
231
|
|
|
label_map = torch.cat([sample[key][DATA] for key in pv_label_keys], dim=0) |
|
232
|
|
|
except RuntimeError: |
|
233
|
|
|
raise RuntimeError('PV label maps have different shapes, make sure they all have the same shapes.') |
|
234
|
|
|
affine = sample[pv_label_keys[0]][AFFINE] |
|
235
|
|
|
for key in pv_label_keys[1:]: |
|
236
|
|
|
if not np.array_equal(affine, sample[key][AFFINE]): |
|
237
|
|
|
raise RuntimeWarning('Be careful, PV label maps with different affines were found.') |
|
238
|
|
|
return label_map, affine |
|
239
|
|
|
|
|
240
|
|
|
def get_params( |
|
241
|
|
|
self, |
|
242
|
|
|
label: Union[str, TypeNumber] |
|
243
|
|
|
) -> Tuple[float, float]: |
|
244
|
|
|
if label in self.gaussian_parameters: |
|
245
|
|
|
mean_range, std_range = self.gaussian_parameters[label]['mean'], self.gaussian_parameters[label]['std'] |
|
246
|
|
|
else: |
|
247
|
|
|
mean_range, std_range = self.default_gaussian_parameters['mean'], self.default_gaussian_parameters['std'] |
|
248
|
|
|
|
|
249
|
|
|
mean = torch.FloatTensor(1).uniform_(*mean_range).item() |
|
250
|
|
|
std = torch.FloatTensor(1).uniform_(*std_range).item() |
|
251
|
|
|
return mean, std |
|
252
|
|
|
|
|
253
|
|
|
@staticmethod |
|
254
|
|
|
def generate_tissue( |
|
255
|
|
|
data: TypeData, |
|
256
|
|
|
mean: TypeNumber, |
|
257
|
|
|
std: TypeNumber, |
|
258
|
|
|
) -> TypeData: |
|
259
|
|
|
# Create the simulated tissue using a gaussian random variable |
|
260
|
|
|
data_shape = data.shape |
|
261
|
|
|
gaussian = torch.randn(data_shape) * std + mean |
|
262
|
|
|
return gaussian * data |
|
263
|
|
|
|