|
1
|
|
|
import torch |
|
2
|
|
|
from torchio.transforms import RandomLabelsToImage |
|
3
|
|
|
from torchio import DATA, AFFINE |
|
4
|
|
|
from ...utils import TorchioTestCase |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
|
class TestRandomLabelsToImage(TorchioTestCase): |
|
8
|
|
|
"""Tests for `RandomLabelsToImage`.""" |
|
9
|
|
|
def test_random_simulation(self): |
|
10
|
|
|
"""The transform runs without error and an 'image' key is present in the transformed sample.""" |
|
11
|
|
|
transform = RandomLabelsToImage(label_key='label') |
|
12
|
|
|
transformed = transform(self.sample) |
|
13
|
|
|
self.assertIn('image', transformed) |
|
14
|
|
|
|
|
15
|
|
|
def test_deterministic_simulation(self): |
|
16
|
|
|
"""The transform creates an image where values are equal to given mean if standard deviation is zero. |
|
17
|
|
|
Using a label map.""" |
|
18
|
|
|
transform = RandomLabelsToImage( |
|
19
|
|
|
label_key='label', |
|
20
|
|
|
gaussian_parameters={1: {'mean': 0.5, 'std': 0}} |
|
21
|
|
|
) |
|
22
|
|
|
transformed = transform(self.sample) |
|
23
|
|
|
self.assertTrue(torch.eq(transformed['image'][DATA] == 0.5, self.sample['label'][DATA] == 1).all()) |
|
24
|
|
|
|
|
25
|
|
|
def test_deterministic_simulation_with_pv_label_map(self): |
|
26
|
|
|
"""The transform creates an image where values are equal to given mean if standard deviation is zero. |
|
27
|
|
|
Using a PV label map.""" |
|
28
|
|
|
transform = RandomLabelsToImage( |
|
29
|
|
|
pv_label_keys=['label'], |
|
30
|
|
|
gaussian_parameters={'label': {'mean': 0.5, 'std': 0}} |
|
31
|
|
|
) |
|
32
|
|
|
transformed = transform(self.sample) |
|
33
|
|
|
self.assertTrue(torch.eq(transformed['image'][DATA] == 0.5, self.sample['label'][DATA] == 1).all()) |
|
34
|
|
|
|
|
35
|
|
|
def test_deterministic_simulation_with_binary_pv_label_map(self): |
|
36
|
|
|
"""The transform creates an image where values are equal to given mean if standard deviation is zero. |
|
37
|
|
|
Using a binarized PV label map.""" |
|
38
|
|
|
transform = RandomLabelsToImage( |
|
39
|
|
|
pv_label_keys=['label'], |
|
40
|
|
|
gaussian_parameters={'label': {'mean': 0.5, 'std': 0}}, |
|
41
|
|
|
binarize=True |
|
42
|
|
|
) |
|
43
|
|
|
transformed = transform(self.sample) |
|
44
|
|
|
self.assertTrue(torch.eq(transformed['image'][DATA] == 0.5, self.sample['label'][DATA] == 1).all()) |
|
45
|
|
|
|
|
46
|
|
|
def test_filling(self): |
|
47
|
|
|
"""The transform can fill in the generated image with an already existing image. |
|
48
|
|
|
Using a label map.""" |
|
49
|
|
|
transform = RandomLabelsToImage( |
|
50
|
|
|
label_key='label', |
|
51
|
|
|
image_key='t1', |
|
52
|
|
|
gaussian_parameters={0: {'mean': 0.0, 'std': 0}} |
|
53
|
|
|
) |
|
54
|
|
|
t1_indices = self.sample['label'][DATA] == 0 |
|
55
|
|
|
transformed = transform(self.sample) |
|
56
|
|
|
self.assertTrue(torch.eq(transformed['t1'][DATA][t1_indices], self.sample['t1'][DATA][t1_indices]).all()) |
|
57
|
|
|
|
|
58
|
|
|
def test_filling_with_pv_label_map(self): |
|
59
|
|
|
"""The transform can fill in the generated image with an already existing image. |
|
60
|
|
|
Using a PV label map.""" |
|
61
|
|
|
transform = RandomLabelsToImage( |
|
62
|
|
|
pv_label_keys=['label'], |
|
63
|
|
|
image_key='t1' |
|
64
|
|
|
) |
|
65
|
|
|
t1_indices = self.sample['label'][DATA] == 0 |
|
66
|
|
|
transformed = transform(self.sample) |
|
67
|
|
|
self.assertTrue(torch.eq(transformed['t1'][DATA][t1_indices], self.sample['t1'][DATA][t1_indices]).all()) |
|
68
|
|
|
|
|
69
|
|
|
def test_filling_with_binary_pv_label_map(self): |
|
70
|
|
|
"""The transform can fill in the generated image with an already existing image. |
|
71
|
|
|
Using a binarized PV label map.""" |
|
72
|
|
|
transform = RandomLabelsToImage( |
|
73
|
|
|
pv_label_keys=['label'], |
|
74
|
|
|
image_key='t1', |
|
75
|
|
|
binarize=True |
|
76
|
|
|
) |
|
77
|
|
|
t1_indices = self.sample['label'][DATA] == 0 |
|
78
|
|
|
transformed = transform(self.sample) |
|
79
|
|
|
self.assertTrue(torch.eq(transformed['t1'][DATA][t1_indices], self.sample['t1'][DATA][t1_indices]).all()) |
|
80
|
|
|
|
|
81
|
|
|
def test_missing_label_key_and_pv_label_keys(self): |
|
82
|
|
|
"""The transform raises an error if both label_key and pv_label_keys are None.""" |
|
83
|
|
|
with self.assertRaises(ValueError): |
|
84
|
|
|
RandomLabelsToImage() |
|
85
|
|
|
|
|
86
|
|
|
def test_with_both_label_key_and_pv_label_keys(self): |
|
87
|
|
|
"""The transform raises an error if both label_key and pv_label_keys are set.""" |
|
88
|
|
|
with self.assertRaises(ValueError): |
|
89
|
|
|
RandomLabelsToImage(label_key='label', pv_label_keys=['label']) |
|
90
|
|
|
|
|
91
|
|
|
def test_with_bad_default_gaussian_parameters_structure(self): |
|
92
|
|
|
"""The transform raises an error if gaussian parameters are not a dictionary |
|
93
|
|
|
with keys 'mean' and 'std'.""" |
|
94
|
|
|
with self.assertRaises(KeyError): |
|
95
|
|
|
RandomLabelsToImage(label_key='label', default_gaussian_parameters={'wrong_key': 0}) |
|
96
|
|
|
|
|
97
|
|
|
def test_with_bad_gaussian_parameters_range(self): |
|
98
|
|
|
"""The transform raises an error if mean and std are not single values nor tuples of two values.""" |
|
99
|
|
|
with self.assertRaises(ValueError): |
|
100
|
|
|
RandomLabelsToImage(label_key='label', default_gaussian_parameters={'mean': [0, 1, 2], 'std': 2}) |
|
101
|
|
|
|
|
102
|
|
|
def test_with_wrong_label_key_type(self): |
|
103
|
|
|
"""The transform raises an error if a wrong type is given for label_key.""" |
|
104
|
|
|
with self.assertRaises(TypeError): |
|
105
|
|
|
RandomLabelsToImage(label_key=42) |
|
106
|
|
|
|
|
107
|
|
|
def test_with_wrong_pv_label_keys_type(self): |
|
108
|
|
|
"""The transform raises an error if a wrong type is given for pv_label_keys.""" |
|
109
|
|
|
with self.assertRaises(TypeError): |
|
110
|
|
|
RandomLabelsToImage(pv_label_keys=42) |
|
111
|
|
|
|
|
112
|
|
|
def test_with_wrong_pv_label_keys_elements_type(self): |
|
113
|
|
|
"""The transform raises an error if wrong type are given for pv_label_keys elements.""" |
|
114
|
|
|
with self.assertRaises(TypeError): |
|
115
|
|
|
RandomLabelsToImage(pv_label_keys=[42, 27]) |
|
116
|
|
|
|
|
117
|
|
|
def test_with_inconsistent_pv_label_maps_shapes(self): |
|
118
|
|
|
"""The transform raises an error if PV label maps have inconsistent shapes.""" |
|
119
|
|
|
transform = RandomLabelsToImage( |
|
120
|
|
|
pv_label_keys=['label', 'label2'], |
|
121
|
|
|
) |
|
122
|
|
|
sample = self.get_inconsistent_sample() |
|
123
|
|
|
with self.assertRaises(RuntimeError): |
|
124
|
|
|
transform(sample) |
|
125
|
|
|
|
|
126
|
|
|
def test_with_inconsistent_pv_label_maps_affines(self): |
|
127
|
|
|
"""The transform raises a warning if PV label maps have inconsistent affines.""" |
|
128
|
|
|
transform = RandomLabelsToImage( |
|
129
|
|
|
pv_label_keys=['label', 'label2'], |
|
130
|
|
|
) |
|
131
|
|
|
sample = self.get_inconsistent_sample() |
|
132
|
|
|
sample['label2'][DATA] = sample['label'][DATA].clone() |
|
|
|
|
|
|
133
|
|
|
sample['label2'][AFFINE][0, 0] = -1 |
|
134
|
|
|
with self.assertRaises(RuntimeWarning): |
|
135
|
|
|
transform(sample) |
|
136
|
|
|
|