|
1
|
|
|
import abc |
|
2
|
|
|
from pathlib import Path |
|
3
|
|
|
from typing import Optional |
|
4
|
|
|
|
|
5
|
|
|
from ..typing import TypePath |
|
6
|
|
|
from ..transforms import Transform |
|
7
|
|
|
from ..download import download_and_extract_archive |
|
8
|
|
|
from .. import SubjectsDataset, Subject, ScalarImage, LabelMap |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
class BITE(SubjectsDataset, abc.ABC): |
|
12
|
|
|
base_url = 'http://www.bic.mni.mcgill.ca/uploads/Services/' |
|
13
|
|
|
|
|
14
|
|
|
def __init__( |
|
15
|
|
|
self, |
|
16
|
|
|
root: TypePath, |
|
17
|
|
|
transform: Optional[Transform] = None, |
|
18
|
|
|
download: bool = False, |
|
19
|
|
|
**kwargs, |
|
20
|
|
|
): |
|
21
|
|
|
root = Path(root).expanduser().absolute() |
|
22
|
|
|
if download: |
|
23
|
|
|
self._download(root) |
|
24
|
|
|
subjects_list = self._get_subjects_list(root) |
|
25
|
|
|
self.kwargs = kwargs |
|
26
|
|
|
super().__init__(subjects_list, transform=transform, **kwargs) |
|
27
|
|
|
|
|
28
|
|
|
def _download(self, root: Path): |
|
29
|
|
|
raise NotImplementedError |
|
30
|
|
|
|
|
31
|
|
|
def _get_subjects_list(self, root: Path): |
|
32
|
|
|
raise NotImplementedError |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
|
class BITE3(BITE): |
|
36
|
|
|
dirname = 'group3' |
|
37
|
|
|
"""Pre- and post-resection MR images in BITE. |
|
38
|
|
|
|
|
39
|
|
|
*The goal of BITE is to share in vivo medical images of patients wtith |
|
40
|
|
|
brain tumors to facilitate the development and validation of new image |
|
41
|
|
|
processing algorithms.* |
|
42
|
|
|
|
|
43
|
|
|
Please check the `BITE website`_ for more information and |
|
44
|
|
|
acknowledgments instructions. |
|
45
|
|
|
|
|
46
|
|
|
.. _BITE website: http://nist.mni.mcgill.ca/?page_id=672 |
|
47
|
|
|
|
|
48
|
|
|
Args: |
|
49
|
|
|
root: Root directory to which the dataset will be downloaded. |
|
50
|
|
|
transform: An instance of |
|
51
|
|
|
:class:`~torchio.transforms.transform.Transform`. |
|
52
|
|
|
download: If set to ``True``, will download the data into :attr:`root`. |
|
53
|
|
|
""" |
|
54
|
|
|
def _download(self, root: Path): |
|
55
|
|
|
if (root / self.dirname).is_dir(): |
|
56
|
|
|
return |
|
57
|
|
|
root.mkdir(exist_ok=True, parents=True) |
|
58
|
|
|
filename = f'{self.dirname}.tar.gz' |
|
59
|
|
|
url = self.base_url + filename |
|
60
|
|
|
download_and_extract_archive( |
|
61
|
|
|
url, |
|
62
|
|
|
download_root=root, |
|
63
|
|
|
md5='e415b63887c40b727c45552614b44634', |
|
64
|
|
|
) |
|
65
|
|
|
(root / filename).unlink() # cleanup |
|
66
|
|
|
|
|
67
|
|
|
def _get_subjects_list(self, root: Path): |
|
68
|
|
|
subjects_dir = root / self.dirname |
|
69
|
|
|
subjects = [] |
|
70
|
|
|
for i in range(1, 15): |
|
71
|
|
|
if i == 13: |
|
72
|
|
|
continue # no MRI for this subject |
|
73
|
|
|
subject_id = f'{i:02d}' |
|
74
|
|
|
subject_dir = subjects_dir / subject_id |
|
75
|
|
|
preop_path = subject_dir / f'{subject_id}_preop_mri.mnc' |
|
76
|
|
|
postop_path = subject_dir / f'{subject_id}_postop_mri.mnc' |
|
77
|
|
|
images_dict = {} |
|
78
|
|
|
images_dict['preop'] = ScalarImage(preop_path) |
|
79
|
|
|
images_dict['postop'] = ScalarImage(postop_path) |
|
80
|
|
|
for fp in subject_dir.glob('*tumor*'): |
|
81
|
|
|
images_dict[fp.stem[3:]] = LabelMap(fp) |
|
82
|
|
|
subject = Subject(images_dict) |
|
83
|
|
|
subjects.append(subject) |
|
84
|
|
|
return subjects |
|
85
|
|
|
|