Passed
Push — master ( ddc71b...32d696 )
by Fernando
01:11
created

torchio.data.image.Image.__init__()   C

Complexity

Conditions 10

Size

Total Lines 48
Code Lines 37

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 10
eloc 37
nop 9
dl 0
loc 48
rs 5.9999
c 0
b 0
f 0

How to fix   Complexity    Many Parameters   

Complexity

Complex classes like torchio.data.image.Image.__init__() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
import warnings
2
from pathlib import Path
3
from typing import Any, Dict, Tuple, Optional
4
5
import torch
6
import humanize
7
import numpy as np
8
import nibabel as nib
9
import SimpleITK as sitk
10
11
from ..utils import (
12
    nib_to_sitk,
13
    get_rotation_and_spacing_from_affine,
14
    get_stem,
15
    ensure_4d,
16
)
17
from ..torchio import (
18
    TypeData,
19
    TypePath,
20
    TypeTripletInt,
21
    TypeTripletFloat,
22
    DATA,
23
    TYPE,
24
    AFFINE,
25
    PATH,
26
    STEM,
27
    INTENSITY,
28
    LABEL,
29
)
30
from .io import read_image, write_image
31
32
33
PROTECTED_KEYS = DATA, AFFINE, TYPE, PATH, STEM
34
35
36
class Image(dict):
37
    r"""TorchIO image.
38
39
    For information about medical image orientation, check out `NiBabel docs`_,
40
    the `3D Slicer wiki`_, `Graham Wideman's website`_, `FSL docs`_ or
41
    `SimpleITK docs`_.
42
43
    Args:
44
        path: Path to a file that can be read by
45
            :mod:`SimpleITK` or :mod:`nibabel`, or to a directory containing
46
            DICOM files. If :py:attr:`tensor` is given, the data in
47
            :py:attr:`path` will not be read. The data is expected to be 2D or
48
            3D, and may have multiple channels (see :attr:`num_spatial_dims` and
49
            :attr:`channels_last`).
50
        type: Type of image, such as :attr:`torchio.INTENSITY` or
51
            :attr:`torchio.LABEL`. This will be used by the transforms to
52
            decide whether to apply an operation, or which interpolation to use
53
            when resampling. For example, `preprocessing`_ and `augmentation`_
54
            intensity transforms will only be applied to images with type
55
            :attr:`torchio.INTENSITY`. Spatial transforms will be applied to
56
            all types, and nearest neighbor interpolation is always used to
57
            resample images with type :attr:`torchio.LABEL`.
58
            The type :attr:`torchio.SAMPLING_MAP` may be used with instances of
59
            :py:class:`~torchio.data.sampler.weighted.WeightedSampler`.
60
        tensor: If :py:attr:`path` is not given, :attr:`tensor` must be a 4D
61
            :py:class:`torch.Tensor` or NumPy array with dimensions
62
            :math:`(C, D, H, W)`. If it is not 4D, TorchIO will try to guess
63
            the dimensions meanings. If 2D, the shape will be interpreted as
64
            :math:`(H, W)`. If 3D, the number of spatial dimensions should be
65
            determined in :attr:`num_spatial_dims`. If :attr:`num_spatial_dims`
66
            is not given and the shape is 3 along the first or last dimensions,
67
            it will be interpreted as a multichannel 2D image. Otherwise, it
68
            be interpreted as a 3D image with a single channel.
69
        affine: If :attr:`path` is not given, :attr:`affine` must be a
70
            :math:`4 \times 4` NumPy array. If ``None``, :attr:`affine` is an
71
            identity matrix.
72
        check_nans: If ``True``, issues a warning if NaNs are found
73
            in the image. If ``False``, images will not be checked for the
74
            presence of NaNs.
75
        num_spatial_dims: If ``2`` and the input tensor has 3 dimensions, it
76
            will be interpreted as a multichannel 2D image. If ``3`` and the
77
            input has 3 dimensions, it will be interpreted as a
78
            single-channel 3D volume.
79
        channels_last: If ``True``, the last dimension of the input will be
80
            interpreted as the channels. Defaults to ``True`` if :attr:`path` is
81
            given and ``False`` otherwise.
82
        **kwargs: Items that will be added to the image dictionary, e.g.
83
            acquisition parameters.
84
85
    Example:
86
        >>> import torch
87
        >>> import torchio
88
        >>> # Loading from a file
89
        >>> t1_image = torchio.Image('t1.nii.gz', type=torchio.INTENSITY)
90
        >>> label_image = torchio.Image('t1_seg.nii.gz', type=torchio.LABEL)
91
        >>> image = torchio.Image(tensor=torch.rand(3, 4, 5))
92
        >>> image = torchio.Image('safe_image.nrrd', check_nans=False)
93
        >>> data, affine = image.data, image.affine
94
        >>> affine.shape
95
        (4, 4)
96
        >>> image.data is image[torchio.DATA]
97
        True
98
        >>> image.data is image.tensor
99
        True
100
        >>> type(image.data)
101
        torch.Tensor
102
103
    TorchIO images are `lazy loaders`_, i.e. the data is only loaded from disk
104
    when needed.
105
106
    Example:
107
        >>> import torchio
108
        >>> image = torchio.Image('t1.nii.gz')
109
        >>> image  # not loaded yet
110
        Image(path: t1.nii.gz; type: intensity)
111
        >>> times_two = 2 * image.data  # data is loaded and cached here
112
        >>> image
113
        Image(shape: (1, 256, 256, 176); spacing: (1.00, 1.00, 1.00); orientation: PIR+; memory: 44.0 MiB; type: intensity)
114
        >>> image.save('doubled_image.nii.gz')
115
116
    .. _lazy loaders: https://en.wikipedia.org/wiki/Lazy_loading
117
    .. _preprocessing: https://torchio.readthedocs.io/transforms/preprocessing.html#intensity
118
    .. _augmentation: https://torchio.readthedocs.io/transforms/augmentation.html#intensity
119
    .. _NiBabel docs: https://nipy.org/nibabel/image_orientation.html
120
    .. _3D Slicer wiki: https://www.slicer.org/wiki/Coordinate_systems
121
    .. _FSL docs: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
122
    .. _SimpleITK docs: https://simpleitk.readthedocs.io/en/master/fundamentalConcepts.html
123
    .. _Graham Wideman's website: http://www.grahamwideman.com/gw/brain/orientation/orientterms.htm
124
    """
125
    def __init__(
126
            self,
127
            path: Optional[TypePath] = None,
128
            type: str = None,
129
            tensor: Optional[TypeData] = None,
130
            affine: Optional[TypeData] = None,
131
            check_nans: bool = True,
132
            num_spatial_dims: Optional[int] = None,
133
            channels_last: Optional[bool] = None,
134
            **kwargs: Dict[str, Any],
135
            ):
136
        self.check_nans = check_nans
137
        self.num_spatial_dims = num_spatial_dims
138
139
        if type is None:
140
            warnings.warn(
141
                'Not specifying the image type is deprecated and will be'
142
                ' mandatory in the future. You can probably use ScalarImage or'
143
                ' LabelMap instead'
144
            )
145
            type = INTENSITY
146
147
        if path is None and tensor is None:
148
            raise ValueError('A value for path or tensor must be given')
149
        self._loaded = False
150
151
        # Number of channels are typically stored in the last dimensions in disk
152
        # But if a tensor is given, the channels should be in the first dim
153
        if channels_last is None:
154
            channels_last = path is not None
155
        self.channels_last = channels_last
156
157
        tensor = self.parse_tensor(tensor)
158
        affine = self.parse_affine(affine)
159
        if tensor is not None:
160
            self[DATA] = tensor
161
            self[AFFINE] = affine
162
            self._loaded = True
163
        for key in PROTECTED_KEYS:
164
            if key in kwargs:
165
                message = f'Key "{key}" is reserved. Use a different one'
166
                raise ValueError(message)
167
168
        super().__init__(**kwargs)
169
        self.path = self._parse_path(path)
170
        self[PATH] = '' if self.path is None else str(self.path)
171
        self[STEM] = '' if self.path is None else get_stem(self.path)
172
        self[TYPE] = type
173
174
    def __repr__(self):
175
        properties = []
176
        if self._loaded:
177
            properties.extend([
178
                f'shape: {self.shape}',
179
                f'spacing: {self.get_spacing_string()}',
180
                f'orientation: {"".join(self.orientation)}+',
181
                f'memory: {humanize.naturalsize(self.memory, binary=True)}',
182
            ])
183
        else:
184
            properties.append(f'path: "{self.path}"')
185
        properties.append(f'type: {self.type}')
186
        properties = '; '.join(properties)
187
        string = f'{self.__class__.__name__}({properties})'
188
        return string
189
190
    def __getitem__(self, item):
191
        if item in (DATA, AFFINE):
192
            if item not in self:
193
                self._load()
194
        return super().__getitem__(item)
195
196
    def __array__(self):
197
        return self[DATA].numpy()
198
199
    def __copy__(self):
200
        kwargs = dict(
201
            tensor=self.data,
202
            affine=self.affine,
203
            type=self.type,
204
            path=self.path,
205
            channels_last=False,
206
        )
207
        for key, value in self.items():
208
            if key in PROTECTED_KEYS: continue
209
            kwargs[key] = value  # should I copy? deepcopy?
210
        return self.__class__(**kwargs)
211
212
    @property
213
    def data(self):
214
        return self[DATA]
215
216
    @property
217
    def tensor(self):
218
        return self.data
219
220
    @property
221
    def affine(self):
222
        return self[AFFINE]
223
224
    @property
225
    def type(self):
226
        return self[TYPE]
227
228
    @property
229
    def shape(self) -> Tuple[int, int, int, int]:
230
        return tuple(self.data.shape)
231
232
    @property
233
    def spatial_shape(self) -> TypeTripletInt:
234
        return self.shape[1:]
235
236
    @property
237
    def orientation(self):
238
        return nib.aff2axcodes(self.affine)
239
240
    @property
241
    def spacing(self):
242
        _, spacing = get_rotation_and_spacing_from_affine(self.affine)
243
        return tuple(spacing)
244
245
    @property
246
    def memory(self):
247
        return np.prod(self.shape) * 4  # float32, i.e. 4 bytes per voxel
248
249
    def get_spacing_string(self):
250
        strings = [f'{n:.2f}' for n in self.spacing]
251
        string = f'({", ".join(strings)})'
252
        return string
253
254
    def get_bounds(self):
255
        """Get image bounds in mm."""
256
        first_index = 3 * (-0.5,)
257
        last_index = np.array(self.spatial_shape) - 0.5
258
        first_point = nib.affines.apply_affine(self.affine, first_index)
259
        last_point = nib.affines.apply_affine(self.affine, last_index)
260
        array = np.array((first_point, last_point))
261
        bounds_x, bounds_y, bounds_z = array.T.tolist()
262
        return bounds_x, bounds_y, bounds_z
263
264
    @staticmethod
265
    def _parse_path(path: TypePath) -> Path:
266
        if path is None:
267
            return None
268
        try:
269
            path = Path(path).expanduser()
270
        except TypeError:
271
            message = f'Conversion to path not possible for variable: {path}'
272
            raise TypeError(message)
273
        if not (path.is_file() or path.is_dir()):  # might be a dir with DICOM
274
            raise FileNotFoundError(f'File not found: {path}')
275
        return path
276
277
    def parse_tensor(self, tensor: TypeData) -> torch.Tensor:
278
        if tensor is None:
279
            return None
280
        if isinstance(tensor, np.ndarray):
281
            tensor = torch.from_numpy(tensor.astype(np.float32))
282
        elif isinstance(tensor, torch.Tensor):
283
            tensor = tensor.float()
284
        tensor = self.parse_tensor_shape(tensor)
285
        if self.check_nans and torch.isnan(tensor).any():
286
            warnings.warn(f'NaNs found in tensor')
287
        return tensor
288
289
    def parse_tensor_shape(self, tensor: torch.Tensor) -> torch.Tensor:
290
        return ensure_4d(tensor, self.channels_last, self.num_spatial_dims)
291
292
    @staticmethod
293
    def parse_affine(affine: np.ndarray) -> np.ndarray:
294
        if affine is None:
295
            return np.eye(4)
296
        if not isinstance(affine, np.ndarray):
297
            raise TypeError(f'Affine must be a NumPy array, not {type(affine)}')
298
        if affine.shape != (4, 4):
299
            raise ValueError(f'Affine shape must be (4, 4), not {affine.shape}')
300
        return affine
301
302
    def _load(self) -> Tuple[torch.Tensor, np.ndarray]:
303
        r"""Load the image from disk.
304
305
        Returns:
306
            Tuple containing a 4D tensor of size :math:`(C, D, H, W)` and a 2D
307
            :math:`4 \times 4` affine matrix to convert voxel indices to world
308
            coordinates.
309
        """
310
        if self._loaded:
311
            return
312
        tensor, affine = read_image(self.path)
313
        tensor = self.parse_tensor_shape(tensor)
314
315
        if self.check_nans and torch.isnan(tensor).any():
316
            warnings.warn(f'NaNs found in file "{self.path}"')
317
        self[DATA] = tensor
318
        self[AFFINE] = affine
319
        self._loaded = True
320
321
    def save(self, path, squeeze=True, channels_last=True):
322
        """Save image to disk.
323
324
        Args:
325
            path: String or instance of :py:class:`pathlib.Path`.
326
            squeeze: If ``True``, the singleton dimensions will be removed
327
                before saving.
328
            channels_last: If ``True``, the channels will be saved in the last
329
                dimension.
330
        """
331
        write_image(
332
            self[DATA],
333
            self[AFFINE],
334
            path,
335
            squeeze=squeeze,
336
            channels_last=channels_last,
337
        )
338
339
    def is_2d(self) -> bool:
340
        return self.shape[-3] == 1
341
342
    def numpy(self) -> np.ndarray:
343
        """Get a NumPy array containing the image data."""
344
        return np.asarray(self)
345
346
    def as_sitk(self) -> sitk.Image:
347
        """Get the image as an instance of :py:class:`sitk.Image`."""
348
        return nib_to_sitk(self[DATA], self[AFFINE])
349
350
    def get_center(self, lps: bool = False) -> TypeTripletFloat:
351
        """Get image center in RAS+ or LPS+ coordinates.
352
353
        Args:
354
            lps: If ``True``, the coordinates will be in LPS+ orientation, i.e.
355
                the first dimension grows towards the left, etc. Otherwise, the
356
                coordinates will be in RAS+ orientation.
357
        """
358
        size = np.array(self.spatial_shape)
359
        center_index = (size - 1) / 2
360
        r, a, s = nib.affines.apply_affine(self.affine, center_index)
361
        if lps:
362
            return (-r, -a, s)
363
        else:
364
            return (r, a, s)
365
366
    def set_check_nans(self, check_nans: bool):
367
        self.check_nans = check_nans
368
369
    def crop(self, index_ini: TypeTripletInt, index_fin: TypeTripletInt):
370
        new_origin = nib.affines.apply_affine(self.affine, index_ini)
371
        new_affine = self.affine.copy()
372
        new_affine[:3, 3] = new_origin
373
        i0, j0, k0 = index_ini
374
        i1, j1, k1 = index_fin
375
        patch = self.data[:, i0:i1, j0:j1, k0:k1].clone()
376
        kwargs = dict(
377
            tensor=patch,
378
            affine=new_affine,
379
            type=self.type,
380
            path=self.path,
381
            channels_last=False,
382
        )
383
        for key, value in self.items():
384
            if key in PROTECTED_KEYS: continue
385
            kwargs[key] = value  # should I copy? deepcopy?
386
        return self.__class__(**kwargs)
387
388
389
class ScalarImage(Image):
390
    """Alias for :py:class:`~torchio.Image` of type :py:attr:`torchio.INTENSITY`.
391
392
    Example:
393
        >>> import torch
394
        >>> import torchio
395
        >>> image = torchio.ScalarImage('t1.nii.gz')  # loading from a file
396
        >>> image = torchio.ScalarImage(tensor=torch.rand(128, 128, 68))  # from tensor
397
        >>> data, affine = image.data, image.affine
398
        >>> affine.shape
399
        (4, 4)
400
        >>> image.data is image[torchio.DATA]
401
        True
402
        >>> image.data is image.tensor
403
        True
404
        >>> type(image.data)
405
        torch.Tensor
406
407
    See :py:class:`~torchio.Image` for more information.
408
409
    Raises:
410
        ValueError: A :py:attr:`type` is used for instantiation.
411
    """
412
    def __init__(self, *args, **kwargs):
413
        if 'type' in kwargs and kwargs['type'] != INTENSITY:
414
            raise ValueError('Type of ScalarImage is always torchio.INTENSITY')
415
        kwargs.update({'type': INTENSITY})
416
        super().__init__(*args, **kwargs)
417
418
419
class LabelMap(Image):
420
    """Alias for :py:class:`~torchio.Image` of type :py:attr:`torchio.LABEL`.
421
422
    Example:
423
        >>> import torch
424
        >>> import torchio
425
        >>> labels = torchio.LabelMap(tensor=torch.rand(128, 128, 68) > 0.5)
426
        >>> labels = torchio.LabelMap('t1_seg.nii.gz')  # loading from a file
427
428
    See :py:class:`~torchio.data.image.Image` for more information.
429
430
    Raises:
431
        ValueError: If a value for :py:attr:`type` is given.
432
    """
433
    def __init__(self, *args, **kwargs):
434
        if 'type' in kwargs and kwargs['type'] != LABEL:
435
            raise ValueError('Type of LabelMap is always torchio.LABEL')
436
        kwargs.update({'type': LABEL})
437
        super().__init__(*args, **kwargs)
438