1
|
|
|
import copy |
2
|
|
|
import warnings |
3
|
|
|
|
4
|
|
|
import torch |
5
|
|
|
import torchio as tio |
6
|
|
|
from torchio.transforms.intensity_transform import IntensityTransform |
7
|
|
|
from ..utils import TorchioTestCase |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class TestInvertibility(TorchioTestCase): |
11
|
|
|
|
12
|
|
|
def test_all_random_transforms(self): |
13
|
|
|
transform = self.get_large_composed_transform() |
14
|
|
|
# Remove RandomLabelsToImage as it will add a new image to the subject |
15
|
|
|
for t in transform.transforms: |
16
|
|
|
if t.name == 'RandomLabelsToImage': |
17
|
|
|
transform.transforms.remove(t) |
18
|
|
|
break |
19
|
|
|
# Ignore elastic deformation and gamma warnings during execution |
20
|
|
|
# Ignore some transforms not invertible |
21
|
|
|
with warnings.catch_warnings(): |
22
|
|
|
warnings.simplefilter('ignore', RuntimeWarning) |
23
|
|
|
transformed = transform(self.sample_subject) |
24
|
|
|
inverting_transform = transformed.get_inverse_transform() |
25
|
|
|
transformed_back = inverting_transform(transformed) |
26
|
|
|
self.assertEqual( |
27
|
|
|
transformed.t1.shape, |
28
|
|
|
transformed_back.t1.shape, |
29
|
|
|
) |
30
|
|
|
self.assertTensorEqual( |
31
|
|
|
transformed.label.affine, |
32
|
|
|
transformed_back.label.affine, |
33
|
|
|
) |
34
|
|
|
|
35
|
|
|
def test_ignore_intensity(self): |
36
|
|
|
composed = self.get_large_composed_transform() |
37
|
|
|
with warnings.catch_warnings(): |
38
|
|
|
warnings.simplefilter('ignore', RuntimeWarning) |
39
|
|
|
transformed = composed(self.sample_subject) |
40
|
|
|
inverse_transform = transformed.get_inverse_transform(warn=False) |
41
|
|
|
for transform in inverse_transform: |
42
|
|
|
assert not isinstance(transform, IntensityTransform) |
43
|
|
|
|
44
|
|
|
def test_different_interpolation(self): |
45
|
|
|
def model_probs(subject): |
46
|
|
|
subject = copy.deepcopy(subject) |
47
|
|
|
subject.im.set_data(torch.rand_like(subject.im.data)) |
48
|
|
|
return subject |
49
|
|
|
|
50
|
|
|
def model_label(subject): |
51
|
|
|
subject = model_probs(subject) |
52
|
|
|
subject.im.set_data(torch.bernoulli(subject.im.data)) |
53
|
|
|
return subject |
54
|
|
|
|
55
|
|
|
transform = tio.RandomAffine(image_interpolation='bspline') |
56
|
|
|
subject = copy.deepcopy(self.sample_subject) |
57
|
|
|
tensor = (torch.rand(1, 20, 20, 20) > 0.5).float() # 0s and 1s |
58
|
|
|
subject = tio.Subject(im=tio.ScalarImage(tensor=tensor)) |
59
|
|
|
transformed = transform(subject) |
60
|
|
|
assert transformed.im.data.min() < 0 |
61
|
|
|
assert transformed.im.data.max() > 1 |
62
|
|
|
|
63
|
|
|
subject_probs = model_probs(transformed) |
64
|
|
|
transformed_back = subject_probs.apply_inverse_transform() |
65
|
|
|
assert transformed_back.im.data.min() < 0 |
66
|
|
|
assert transformed_back.im.data.max() > 1 |
67
|
|
|
transformed_back_linear = subject_probs.apply_inverse_transform( |
68
|
|
|
image_interpolation='linear', |
69
|
|
|
) |
70
|
|
|
assert transformed_back_linear.im.data.min() >= 0 |
71
|
|
|
assert transformed_back_linear.im.data.max() <= 1 |
72
|
|
|
|
73
|
|
|
subject_label = model_label(transformed) |
74
|
|
|
transformed_back = subject_label.apply_inverse_transform() |
75
|
|
|
assert transformed_back.im.data.min() < 0 |
76
|
|
|
assert transformed_back.im.data.max() > 1 |
77
|
|
|
transformed_back_linear = subject_label.apply_inverse_transform( |
78
|
|
|
image_interpolation='nearest', |
79
|
|
|
) |
80
|
|
|
assert transformed_back_linear.im.data.unique().tolist() == [0, 1] |
81
|
|
|
|