|
1
|
|
|
import warnings |
|
2
|
|
|
import torch |
|
3
|
|
|
import torchio |
|
4
|
|
|
import numpy as np |
|
5
|
|
|
from torchio import Subject, Image, INTENSITY, DATA |
|
6
|
|
|
from torchio.transforms import RandomNoise, compose_from_history, Compose, RandomSpike |
|
7
|
|
|
from ..utils import TorchioTestCase |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class TestReproducibility(TorchioTestCase): |
|
11
|
|
|
|
|
12
|
|
|
def setUp(self): |
|
13
|
|
|
super().setUp() |
|
14
|
|
|
|
|
15
|
|
|
def random_stuff(self, seed=42): |
|
16
|
|
|
transform = RandomNoise(std=(100, 100))#, seed=seed) |
|
17
|
|
|
transformed = transform(self.subject, seed=seed) |
|
18
|
|
|
value = transformed.img.data.sum().item() |
|
19
|
|
|
#_, seed = transformed.get_applied_transforms()[0] |
|
20
|
|
|
seed = transformed.history[0][1]["seed"] #["RandomNoise"]["seed"] |
|
21
|
|
|
return value, seed |
|
22
|
|
|
|
|
23
|
|
|
def test_rng_state(self): |
|
24
|
|
|
trsfm = RandomNoise() |
|
25
|
|
|
subject1, subject2 = Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))), Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))) |
|
26
|
|
|
transformed1 = trsfm(subject1) |
|
27
|
|
|
seed1 = transformed1.history[0][1]["seed"] |
|
28
|
|
|
value1_torch, value1_np = torch.rand(1).item(), np.random.rand() |
|
29
|
|
|
transformed2 = trsfm(subject2, seed=seed1) |
|
30
|
|
|
value2_torch, value2_np = torch.rand(1).item(), np.random.rand() |
|
31
|
|
|
data1, data2 = transformed1["img"][DATA], transformed2["img"][DATA] |
|
32
|
|
|
self.assertNotEqual(value1_torch, value2_torch) |
|
33
|
|
|
self.assertNotEqual(value1_np, value2_np) |
|
34
|
|
|
self.assertTensorEqual(data1, data2) |
|
35
|
|
|
|
|
36
|
|
|
def test_reproducibility_seed(self): |
|
37
|
|
|
trsfm = RandomNoise() |
|
38
|
|
|
subject1, subject2 = Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))), Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))) |
|
39
|
|
|
transformed1 = trsfm(subject1) |
|
40
|
|
|
seed1 = transformed1.history[0][1]["seed"] |
|
41
|
|
|
transformed2 = trsfm(subject2, seed=seed1) |
|
42
|
|
|
data1, data2 = transformed1["img"][DATA], transformed2["img"][DATA] |
|
43
|
|
|
seed2 = transformed2.history[0][1]["seed"] |
|
44
|
|
|
self.assertTensorEqual(data1, data2) |
|
45
|
|
|
self.assertEqual(seed1, seed2) |
|
46
|
|
|
|
|
47
|
|
|
def test_reproducibility_no_seed(self): |
|
48
|
|
|
trsfm = RandomNoise() |
|
49
|
|
|
subject1, subject2 = Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))), Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))) |
|
50
|
|
|
transformed1 = trsfm(subject1) |
|
51
|
|
|
transformed2 = trsfm(subject2) |
|
52
|
|
|
data1, data2 = transformed1["img"][DATA], transformed2["img"][DATA] |
|
53
|
|
|
seed1, seed2 = transformed1.history[0][1]["seed"], transformed2.history[0][1]["seed"] |
|
54
|
|
|
self.assertNotEqual(seed1, seed2) |
|
55
|
|
|
self.assertTensorNotEqual(data1, data2) |
|
56
|
|
|
|
|
57
|
|
|
def test_reproducibility_from_history(self): |
|
58
|
|
|
trsfm = RandomNoise() |
|
59
|
|
|
subject1, subject2 = Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))), Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))) |
|
60
|
|
|
transformed1 = trsfm(subject1) |
|
61
|
|
|
history1 = transformed1.history |
|
62
|
|
|
compose_hist, seeds_hist = compose_from_history(history=history1) |
|
63
|
|
|
transformed2 = compose_hist(subject2, seeds=seeds_hist) |
|
64
|
|
|
data1, data2 = transformed1["img"][DATA], transformed2["img"][DATA] |
|
65
|
|
|
self.assertTensorEqual(data1, data2) |
|
66
|
|
|
|
|
67
|
|
|
def test_reproducibility_compose(self): |
|
68
|
|
|
trsfm = Compose([RandomNoise(p=0.0), RandomSpike(num_spikes=3, p=1.0)]) |
|
69
|
|
|
subject1, subject2 = Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))), Subject(img=Image(tensor=torch.ones(1, 4, 4, 4))) |
|
70
|
|
|
transformed1 = trsfm(subject1) |
|
71
|
|
|
history1 = transformed1.history |
|
72
|
|
|
compose_hist, seeds_hist = compose_from_history(history=history1) |
|
73
|
|
|
print("Compose hist: {}\nSeeds_hist: {}".format(history1, seeds_hist)) |
|
74
|
|
|
transformed2 = compose_hist(subject2, seeds=seeds_hist) |
|
75
|
|
|
data1, data2 = transformed1["img"][DATA], transformed2["img"][DATA] |
|
76
|
|
|
self.assertTensorEqual(data1, data2) |
|
77
|
|
|
|
|
78
|
|
|
def test_all_random_transforms(self): |
|
79
|
|
|
sample = Subject( |
|
80
|
|
|
t1=Image(tensor=torch.rand(1, 20, 20, 20)), |
|
81
|
|
|
seg=Image(tensor=torch.rand(1, 20, 20, 20) > 1, type=INTENSITY) |
|
82
|
|
|
) |
|
83
|
|
|
|
|
84
|
|
|
transforms_names = [ |
|
85
|
|
|
name |
|
86
|
|
|
for name in dir(torchio) |
|
87
|
|
|
if name.startswith('Random') |
|
88
|
|
|
] |
|
89
|
|
|
|
|
90
|
|
|
#Downsample at the end so that the image shape is not modified |
|
91
|
|
|
transforms_names.remove('RandomDownsample') |
|
92
|
|
|
transforms_names.append('RandomDownsample') |
|
93
|
|
|
|
|
94
|
|
|
transforms = [] |
|
95
|
|
|
for transform_name in transforms_names: |
|
96
|
|
|
if transform_name is "RandomLabelsToImage": #Only transform needing an argument for __init__ |
|
97
|
|
|
transform = getattr(torchio, transform_name)(label_key="seg") |
|
98
|
|
|
else: |
|
99
|
|
|
transform = getattr(torchio, transform_name)() |
|
100
|
|
|
transforms.append(transform) |
|
101
|
|
|
composed_transform = torchio.Compose(transforms) |
|
102
|
|
|
with warnings.catch_warnings(): # ignore elastic deformation warning |
|
103
|
|
|
warnings.simplefilter('ignore', UserWarning) |
|
104
|
|
|
transformed = composed_transform(sample) |
|
105
|
|
|
|
|
106
|
|
|
new_transforms = [] |
|
107
|
|
|
seeds = [] |
|
108
|
|
|
|
|
109
|
|
|
for transform_name, params_dict in transformed.history: |
|
110
|
|
|
if transform_name in ["Resample", "Compose"]: #The resample in the history comes from the DownSampling |
|
111
|
|
|
continue |
|
112
|
|
|
transform_class = getattr(torchio, transform_name) |
|
113
|
|
|
|
|
114
|
|
|
if transform_name is "RandomLabelsToImage": |
|
115
|
|
|
transform = transform_class(label_key="seg") |
|
116
|
|
|
else: |
|
117
|
|
|
transform = transform_class() |
|
118
|
|
|
new_transforms.append(transform) |
|
119
|
|
|
seeds.append(params_dict['seed']) |
|
120
|
|
|
|
|
121
|
|
|
composed_transform = torchio.Compose(new_transforms) |
|
122
|
|
|
with warnings.catch_warnings(): # ignore elastic deformation warning |
|
123
|
|
|
warnings.simplefilter('ignore', UserWarning) |
|
124
|
|
|
new_transformed = composed_transform(sample, seeds=seeds) |
|
125
|
|
|
self.assertTensorEqual(transformed.t1.data, new_transformed.t1.data) |
|
126
|
|
|
self.assertTensorEqual(transformed.seg.data, new_transformed.seg.data) |
|
127
|
|
|
|