| Total Complexity | 7 |
| Total Lines | 46 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import torch |
||
| 2 | from ...data.subject import Subject |
||
| 3 | from ...typing import TypePatchSize |
||
| 4 | from .sampler import RandomSampler |
||
| 5 | from typing import Generator |
||
| 6 | import numpy as np |
||
| 7 | |||
| 8 | |||
| 9 | class UniformSampler(RandomSampler): |
||
| 10 | """Randomly extract patches from a volume with uniform probability. |
||
| 11 | |||
| 12 | Args: |
||
| 13 | patch_size: See :class:`~torchio.data.PatchSampler`. |
||
| 14 | """ |
||
| 15 | def __init__(self, patch_size: TypePatchSize): |
||
| 16 | super().__init__(patch_size) |
||
| 17 | |||
| 18 | def get_probability_map(self, subject: Subject) -> torch.Tensor: |
||
| 19 | return torch.ones(1, *subject.spatial_shape) |
||
| 20 | |||
| 21 | def __call__( |
||
| 22 | self, |
||
| 23 | subject: Subject, |
||
| 24 | num_patches: int = None, |
||
| 25 | ) -> Generator[Subject, None, None]: |
||
| 26 | subject.check_consistent_spatial_shape() |
||
| 27 | |||
| 28 | if np.any(self.patch_size > subject.spatial_shape): |
||
| 29 | message = ( |
||
| 30 | f'Patch size {tuple(self.patch_size)} cannot be' |
||
| 31 | f' larger than image size {tuple(subject.spatial_shape)}' |
||
| 32 | ) |
||
| 33 | raise RuntimeError(message) |
||
| 34 | |||
| 35 | valid_range = subject.spatial_shape - self.patch_size |
||
| 36 | patches_left = num_patches if num_patches is not None else True |
||
| 37 | while patches_left: |
||
| 38 | index_ini = [ |
||
| 39 | torch.randint(x + 1, (1,)).item() |
||
| 40 | for x in valid_range |
||
| 41 | ] |
||
| 42 | index_ini_array = np.asarray(index_ini) |
||
| 43 | yield self.extract_patch(subject, index_ini_array) |
||
| 44 | if num_patches is not None: |
||
| 45 | patches_left -= 1 |
||
| 46 |