|
1
|
|
|
import warnings |
|
2
|
|
|
from pathlib import Path |
|
3
|
|
|
from typing import Tuple |
|
4
|
|
|
import torch |
|
5
|
|
|
import numpy as np |
|
6
|
|
|
import nibabel as nib |
|
7
|
|
|
import SimpleITK as sitk |
|
8
|
|
|
from .. import TypePath, TypeData |
|
9
|
|
|
from ..utils import nib_to_sitk, sitk_to_nib |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
FLIPXY = np.diag([-1, -1, 1, 1]) |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
def read_image( |
|
16
|
|
|
path: TypePath, |
|
17
|
|
|
itk_first: bool = False, |
|
18
|
|
|
) -> Tuple[torch.Tensor, np.ndarray]: |
|
19
|
|
|
if itk_first: |
|
20
|
|
|
try: |
|
21
|
|
|
result = _read_sitk(path) |
|
22
|
|
|
except RuntimeError: # try with NiBabel |
|
23
|
|
|
result = _read_nibabel(path) |
|
24
|
|
|
else: |
|
25
|
|
|
try: |
|
26
|
|
|
result = _read_nibabel(path) |
|
27
|
|
|
except nib.loadsave.ImageFileError: # try with ITK |
|
28
|
|
|
result = _read_sitk(path) |
|
29
|
|
|
return result |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
def _read_nibabel(path: TypePath) -> Tuple[torch.Tensor, np.ndarray]: |
|
33
|
|
|
img = nib.load(str(path), mmap=False) |
|
34
|
|
|
data = img.get_fdata(dtype=np.float32) |
|
35
|
|
|
tensor = torch.from_numpy(data) |
|
36
|
|
|
affine = img.affine |
|
37
|
|
|
return tensor, affine |
|
38
|
|
|
|
|
39
|
|
|
|
|
40
|
|
|
def _read_sitk( |
|
41
|
|
|
path: TypePath, |
|
42
|
|
|
transpose_2d: bool = True, |
|
43
|
|
|
) -> Tuple[torch.Tensor, np.ndarray]: |
|
44
|
|
|
if Path(path).is_dir(): # assume DICOM |
|
45
|
|
|
image = _read_dicom(path) |
|
46
|
|
|
else: |
|
47
|
|
|
image = sitk.ReadImage(str(path)) |
|
48
|
|
|
if image.GetDimension() == 2 and transpose_2d: |
|
49
|
|
|
image = sitk.PermuteAxes(image, (1, 0)) |
|
50
|
|
|
data, affine = sitk_to_nib(image, keepdim=True) |
|
51
|
|
|
if data.dtype != np.float32: |
|
52
|
|
|
data = data.astype(np.float32) |
|
53
|
|
|
tensor = torch.from_numpy(data) |
|
54
|
|
|
return tensor, affine |
|
55
|
|
|
|
|
56
|
|
|
|
|
57
|
|
|
def _read_dicom(directory: TypePath): |
|
58
|
|
|
directory = Path(directory) |
|
59
|
|
|
if not directory.is_dir(): # unreachable if called from _read_sitk |
|
60
|
|
|
raise FileNotFoundError(f'Directory "{directory}" not found') |
|
61
|
|
|
reader = sitk.ImageSeriesReader() |
|
62
|
|
|
dicom_names = reader.GetGDCMSeriesFileNames(str(directory)) |
|
63
|
|
|
if not dicom_names: |
|
64
|
|
|
message = ( |
|
65
|
|
|
f'The directory "{directory}"' |
|
66
|
|
|
' does not seem to contain DICOM files' |
|
67
|
|
|
) |
|
68
|
|
|
raise FileNotFoundError(message) |
|
69
|
|
|
reader.SetFileNames(dicom_names) |
|
70
|
|
|
image = reader.Execute() |
|
71
|
|
|
return image |
|
72
|
|
|
|
|
73
|
|
|
|
|
74
|
|
|
def write_image( |
|
75
|
|
|
tensor: torch.Tensor, |
|
76
|
|
|
affine: TypeData, |
|
77
|
|
|
path: TypePath, |
|
78
|
|
|
itk_first: bool = False, |
|
79
|
|
|
squeeze: bool = True, |
|
80
|
|
|
channels_last: bool = True, |
|
81
|
|
|
) -> None: |
|
82
|
|
|
args = tensor, affine, path |
|
83
|
|
|
kwargs = dict(squeeze=squeeze, channels_last=channels_last) |
|
84
|
|
|
if itk_first: |
|
85
|
|
|
try: |
|
86
|
|
|
_write_sitk(*args, squeeze=squeeze) |
|
87
|
|
|
except RuntimeError: # try with NiBabel |
|
88
|
|
|
_write_nibabel(*args, squeeze=squeeze, channels_last=channels_last) |
|
89
|
|
|
else: |
|
90
|
|
|
try: |
|
91
|
|
|
_write_nibabel(*args, squeeze=squeeze, channels_last=channels_last) |
|
92
|
|
|
except nib.loadsave.ImageFileError: # try with ITK |
|
93
|
|
|
_write_sitk(*args, squeeze=squeeze) |
|
94
|
|
|
|
|
95
|
|
|
|
|
96
|
|
|
def _write_nibabel( |
|
97
|
|
|
tensor: TypeData, |
|
98
|
|
|
affine: TypeData, |
|
99
|
|
|
path: TypePath, |
|
100
|
|
|
squeeze: bool = True, |
|
101
|
|
|
channels_last: bool = True, |
|
102
|
|
|
) -> None: |
|
103
|
|
|
""" |
|
104
|
|
|
Expects a path with an extension that can be used by nibabel.save |
|
105
|
|
|
to write a NIfTI-1 image, such as '.nii.gz' or '.img' |
|
106
|
|
|
""" |
|
107
|
|
|
assert tensor.ndim == 4 |
|
108
|
|
|
if channels_last: |
|
109
|
|
|
tensor = tensor.permute(1, 2, 3, 0) |
|
110
|
|
|
tensor = tensor.squeeze() if squeeze else tensor |
|
111
|
|
|
suffix = Path(str(path).replace('.gz', '')).suffix |
|
112
|
|
|
if '.nii' in suffix: |
|
113
|
|
|
img = nib.Nifti1Image(np.asarray(tensor), affine) |
|
114
|
|
|
elif '.hdr' in suffix or '.img' in suffix: |
|
115
|
|
|
img = nib.Nifti1Pair(np.asarray(tensor), affine) |
|
116
|
|
|
else: |
|
117
|
|
|
raise nib.loadsave.ImageFileError |
|
118
|
|
|
img.header['qform_code'] = 1 |
|
119
|
|
|
img.header['sform_code'] = 0 |
|
120
|
|
|
img.to_filename(str(path)) |
|
121
|
|
|
|
|
122
|
|
|
|
|
123
|
|
|
def _write_sitk( |
|
124
|
|
|
tensor: torch.Tensor, |
|
125
|
|
|
affine: TypeData, |
|
126
|
|
|
path: TypePath, |
|
127
|
|
|
squeeze: bool = True, |
|
128
|
|
|
use_compression: bool = True, |
|
129
|
|
|
transpose_2d: bool = True, |
|
130
|
|
|
) -> None: |
|
131
|
|
|
assert tensor.ndim == 4 |
|
132
|
|
|
path = Path(path) |
|
133
|
|
|
if path.suffix in ('.png', '.jpg', '.jpeg'): |
|
134
|
|
|
warnings.warn(f'Casting to uint 8 before saving to {path}') |
|
135
|
|
|
tensor = tensor.numpy().astype(np.uint8) |
|
136
|
|
|
image = nib_to_sitk(tensor, affine, squeeze=squeeze) |
|
137
|
|
|
if image.GetDimension() == 2 and transpose_2d: |
|
138
|
|
|
image = sitk.PermuteAxes(image, (1, 0)) |
|
139
|
|
|
sitk.WriteImage(image, str(path), use_compression) |
|
140
|
|
|
|
|
141
|
|
|
|
|
142
|
|
|
def read_matrix(path: TypePath): |
|
143
|
|
|
"""Read an affine transform and convert to tensor.""" |
|
144
|
|
|
path = Path(path) |
|
145
|
|
|
suffix = path.suffix |
|
146
|
|
|
if suffix in ('.tfm', '.h5'): # ITK |
|
147
|
|
|
tensor = _read_itk_matrix(path) |
|
148
|
|
|
elif suffix in ('.txt', '.trsf'): # NiftyReg, blockmatching |
|
149
|
|
|
tensor = _read_niftyreg_matrix(path) |
|
150
|
|
|
return tensor |
|
|
|
|
|
|
151
|
|
|
|
|
152
|
|
|
|
|
153
|
|
|
def write_matrix(matrix: torch.Tensor, path: TypePath): |
|
154
|
|
|
"""Write an affine transform.""" |
|
155
|
|
|
path = Path(path) |
|
156
|
|
|
suffix = path.suffix |
|
157
|
|
|
if suffix in ('.tfm', '.h5'): # ITK |
|
158
|
|
|
_write_itk_matrix(matrix, path) |
|
159
|
|
|
elif suffix in ('.txt', '.trsf'): # NiftyReg, blockmatching |
|
160
|
|
|
_write_niftyreg_matrix(matrix, path) |
|
161
|
|
|
|
|
162
|
|
|
|
|
163
|
|
|
def _to_itk_convention(matrix): |
|
164
|
|
|
"""RAS to LPS""" |
|
165
|
|
|
matrix = np.dot(FLIPXY, matrix) |
|
166
|
|
|
matrix = np.dot(matrix, FLIPXY) |
|
167
|
|
|
matrix = np.linalg.inv(matrix) |
|
168
|
|
|
return matrix |
|
169
|
|
|
|
|
170
|
|
|
|
|
171
|
|
|
def _from_itk_convention(matrix): |
|
172
|
|
|
"""LPS to RAS""" |
|
173
|
|
|
matrix = np.dot(matrix, FLIPXY) |
|
174
|
|
|
matrix = np.dot(FLIPXY, matrix) |
|
175
|
|
|
matrix = np.linalg.inv(matrix) |
|
176
|
|
|
return matrix |
|
177
|
|
|
|
|
178
|
|
|
|
|
179
|
|
|
def _read_itk_matrix(path): |
|
180
|
|
|
"""Read an affine transform in ITK's .tfm format""" |
|
181
|
|
|
transform = sitk.ReadTransform(str(path)) |
|
182
|
|
|
parameters = transform.GetParameters() |
|
183
|
|
|
rotation_parameters = parameters[:9] |
|
184
|
|
|
rotation_matrix = np.array(rotation_parameters).reshape(3, 3) |
|
185
|
|
|
translation_parameters = parameters[9:] |
|
186
|
|
|
translation_vector = np.array(translation_parameters).reshape(3, 1) |
|
187
|
|
|
matrix = np.hstack([rotation_matrix, translation_vector]) |
|
188
|
|
|
homogeneous_matrix_lps = np.vstack([matrix, [0, 0, 0, 1]]) |
|
189
|
|
|
homogeneous_matrix_ras = _from_itk_convention(homogeneous_matrix_lps) |
|
190
|
|
|
return torch.from_numpy(homogeneous_matrix_ras) |
|
191
|
|
|
|
|
192
|
|
|
|
|
193
|
|
|
def _write_itk_matrix(matrix, tfm_path): |
|
194
|
|
|
"""The tfm file contains the matrix from floating to reference.""" |
|
195
|
|
|
transform = _matrix_to_itk_transform(matrix) |
|
196
|
|
|
transform.WriteTransform(str(tfm_path)) |
|
197
|
|
|
|
|
198
|
|
|
|
|
199
|
|
|
def _matrix_to_itk_transform(matrix, dimensions=3): |
|
200
|
|
|
matrix = _to_itk_convention(matrix) |
|
201
|
|
|
rotation = matrix[:dimensions, :dimensions].ravel().tolist() |
|
202
|
|
|
translation = matrix[:dimensions, 3].tolist() |
|
203
|
|
|
transform = sitk.AffineTransform(rotation, translation) |
|
204
|
|
|
return transform |
|
205
|
|
|
|
|
206
|
|
|
|
|
207
|
|
|
def _read_niftyreg_matrix(trsf_path): |
|
208
|
|
|
"""Read a NiftyReg matrix and return it as a NumPy array""" |
|
209
|
|
|
matrix = np.loadtxt(trsf_path) |
|
210
|
|
|
matrix = np.linalg.inv(matrix) |
|
211
|
|
|
return torch.from_numpy(matrix) |
|
212
|
|
|
|
|
213
|
|
|
|
|
214
|
|
|
def _write_niftyreg_matrix(matrix, txt_path): |
|
215
|
|
|
"""Write an affine transform in NiftyReg's .txt format (ref -> flo)""" |
|
216
|
|
|
matrix = np.linalg.inv(matrix) |
|
217
|
|
|
np.savetxt(txt_path, matrix, fmt='%.8f') |
|
218
|
|
|
|