|
1
|
|
|
from typing import Dict, Optional |
|
2
|
|
|
|
|
3
|
|
|
import torch |
|
4
|
|
|
|
|
5
|
|
|
from ...data.image import LabelMap |
|
6
|
|
|
from ...data.subject import Subject |
|
7
|
|
|
from ...typing import TypePatchSize |
|
8
|
|
|
from ...constants import TYPE, LABEL |
|
9
|
|
|
from .weighted import WeightedSampler |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
class LabelSampler(WeightedSampler): |
|
13
|
|
|
r"""Extract random patches with labeled voxels at their center. |
|
14
|
|
|
|
|
15
|
|
|
This sampler yields patches whose center value is greater than 0 |
|
16
|
|
|
in the :attr:`label_name`. |
|
17
|
|
|
|
|
18
|
|
|
Args: |
|
19
|
|
|
patch_size: See :class:`~torchio.data.PatchSampler`. |
|
20
|
|
|
label_name: Name of the label image in the subject that will be used to |
|
21
|
|
|
generate the sampling probability map. If ``None``, the first image |
|
22
|
|
|
of type :attr:`torchio.LABEL` found in the subject subject will be |
|
23
|
|
|
used. |
|
24
|
|
|
label_probabilities: Dictionary containing the probability that each |
|
25
|
|
|
class will be sampled. Probabilities do not need to be normalized. |
|
26
|
|
|
For example, a value of ``{0: 0, 1: 2, 2: 1, 3: 1}`` will create a |
|
27
|
|
|
sampler whose patches centers will have 50% probability of being |
|
28
|
|
|
labeled as ``1``, 25% of being ``2`` and 25% of being ``3``. |
|
29
|
|
|
If ``None``, the label map is binarized and the value is set to |
|
30
|
|
|
``{0: 0, 1: 1}``. |
|
31
|
|
|
If the input has multiple channels, a value of |
|
32
|
|
|
``{0: 0, 1: 2, 2: 1, 3: 1}`` will create a |
|
33
|
|
|
sampler whose patches centers will have 50% probability of being |
|
34
|
|
|
taken from a non zero value of channel ``1``, 25% from channel |
|
35
|
|
|
``2`` and 25% from channel ``3``. |
|
36
|
|
|
|
|
37
|
|
|
Example: |
|
38
|
|
|
>>> import torchio as tio |
|
39
|
|
|
>>> subject = tio.datasets.Colin27() |
|
40
|
|
|
>>> subject |
|
41
|
|
|
Colin27(Keys: ('t1', 'head', 'brain'); images: 3) |
|
42
|
|
|
>>> subject = tio.SubjectsDataset([subject])[0] |
|
43
|
|
|
>>> sampler = tio.data.LabelSampler(64, 'brain') |
|
44
|
|
|
>>> generator = sampler(subject) |
|
45
|
|
|
>>> for patch in generator: |
|
46
|
|
|
... print(patch.shape) |
|
47
|
|
|
|
|
48
|
|
|
If you want a specific number of patches from a volume, e.g. 10: |
|
49
|
|
|
|
|
50
|
|
|
>>> generator = sampler(subject, num_patches=10) |
|
51
|
|
|
>>> for patch in iterator: |
|
52
|
|
|
... print(patch.shape) |
|
53
|
|
|
|
|
54
|
|
|
""" |
|
55
|
|
|
def __init__( |
|
56
|
|
|
self, |
|
57
|
|
|
patch_size: TypePatchSize, |
|
58
|
|
|
label_name: Optional[str] = None, |
|
59
|
|
|
label_probabilities: Optional[Dict[int, float]] = None, |
|
60
|
|
|
): |
|
61
|
|
|
super().__init__(patch_size, probability_map=label_name) |
|
62
|
|
|
self.label_probabilities_dict = label_probabilities |
|
63
|
|
|
|
|
64
|
|
|
def get_probability_map_image(self, subject: Subject) -> LabelMap: |
|
65
|
|
|
if self.probability_map_name is None: |
|
66
|
|
|
for image in subject.get_images(intensity_only=False): |
|
67
|
|
|
if image[TYPE] == LABEL: |
|
68
|
|
|
label_map = image |
|
69
|
|
|
break |
|
70
|
|
|
elif self.probability_map_name in subject: |
|
71
|
|
|
label_map = subject[self.probability_map_name] |
|
72
|
|
|
else: |
|
73
|
|
|
message = ( |
|
74
|
|
|
f'Image "{self.probability_map_name}"' |
|
75
|
|
|
f' not found in subject subject: {subject}' |
|
76
|
|
|
) |
|
77
|
|
|
raise KeyError(message) |
|
78
|
|
|
return label_map |
|
|
|
|
|
|
79
|
|
|
|
|
80
|
|
|
def get_probability_map(self, subject: Subject) -> torch.Tensor: |
|
81
|
|
|
label_map_tensor = self.get_probability_map_image(subject).data |
|
82
|
|
|
label_map_tensor = label_map_tensor.float() |
|
83
|
|
|
|
|
84
|
|
|
if self.label_probabilities_dict is None: |
|
85
|
|
|
return label_map_tensor > 0 |
|
86
|
|
|
probability_map = self.get_probabilities_from_label_map( |
|
87
|
|
|
label_map_tensor, |
|
88
|
|
|
self.label_probabilities_dict, |
|
89
|
|
|
) |
|
90
|
|
|
return probability_map |
|
91
|
|
|
|
|
92
|
|
|
@staticmethod |
|
93
|
|
|
def get_probabilities_from_label_map( |
|
94
|
|
|
label_map: torch.Tensor, |
|
95
|
|
|
label_probabilities_dict: Dict[int, float], |
|
96
|
|
|
) -> torch.Tensor: |
|
97
|
|
|
"""Create probability map according to label map probabilities.""" |
|
98
|
|
|
multichannel = label_map.shape[0] > 1 |
|
99
|
|
|
probability_map = torch.zeros_like(label_map) |
|
100
|
|
|
label_probs = torch.Tensor(list(label_probabilities_dict.values())) |
|
101
|
|
|
normalized_probs = label_probs / label_probs.sum() |
|
102
|
|
|
iterable = zip(label_probabilities_dict, normalized_probs) |
|
103
|
|
|
for label, label_probability in iterable: |
|
104
|
|
|
if multichannel: |
|
105
|
|
|
mask = label_map[label] |
|
106
|
|
|
else: |
|
107
|
|
|
mask = label_map == label |
|
108
|
|
|
label_size = mask.sum() |
|
109
|
|
|
if not label_size: |
|
110
|
|
|
continue |
|
111
|
|
|
prob_voxels = label_probability / label_size |
|
112
|
|
|
if multichannel: |
|
113
|
|
|
probability_map[label] = prob_voxels * mask |
|
114
|
|
|
else: |
|
115
|
|
|
probability_map[mask] = prob_voxels |
|
116
|
|
|
if multichannel: |
|
117
|
|
|
probability_map = probability_map.sum(dim=0, keepdim=True) |
|
118
|
|
|
return probability_map |
|
119
|
|
|
|