1
|
|
|
import copy |
2
|
|
|
from typing import Sequence, Optional, Callable, Iterable |
3
|
|
|
|
4
|
|
|
from torch.utils.data import Dataset |
5
|
|
|
|
6
|
|
|
from .subject import Subject |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class SubjectsDataset(Dataset): |
10
|
|
|
"""Base TorchIO dataset. |
11
|
|
|
|
12
|
|
|
Reader of 3D medical images that directly inherits from the PyTorch |
13
|
|
|
:class:`~torch.utils.data.Dataset`. It can be used with a PyTorch |
14
|
|
|
:class:`~torch.utils.data.DataLoader` for efficient loading and |
15
|
|
|
augmentation. It receives a list of instances of :class:`~torchio.Subject` |
16
|
|
|
and an optional transform applied to the volumes after loading. |
17
|
|
|
|
18
|
|
|
Args: |
19
|
|
|
subjects: List of instances of :class:`~torchio.Subject`. |
20
|
|
|
transform: An instance of :class:`~torchio.transforms.Transform` |
21
|
|
|
that will be applied to each subject. |
22
|
|
|
load_getitem: Load all subject images before returning it in |
23
|
|
|
:meth:`__getitem__`. Set it to ``False`` if some of the images will |
24
|
|
|
not be needed during training. |
25
|
|
|
|
26
|
|
|
Example: |
27
|
|
|
>>> import torchio as tio |
28
|
|
|
>>> subject_a = tio.Subject( |
29
|
|
|
... t1=tio.ScalarImage('t1.nrrd',), |
30
|
|
|
... t2=tio.ScalarImage('t2.mha',), |
31
|
|
|
... label=tio.LabelMap('t1_seg.nii.gz'), |
32
|
|
|
... age=31, |
33
|
|
|
... name='Fernando Perez', |
34
|
|
|
... ) |
35
|
|
|
>>> subject_b = tio.Subject( |
36
|
|
|
... t1=tio.ScalarImage('colin27_t1_tal_lin.minc',), |
37
|
|
|
... t2=tio.ScalarImage('colin27_t2_tal_lin_dicom',), |
38
|
|
|
... label=tio.LabelMap('colin27_seg1.nii.gz'), |
39
|
|
|
... age=56, |
40
|
|
|
... name='Colin Holmes', |
41
|
|
|
... ) |
42
|
|
|
>>> subjects_list = [subject_a, subject_b] |
43
|
|
|
>>> transforms = [ |
44
|
|
|
... tio.RescaleIntensity((0, 1)), |
45
|
|
|
... tio.RandomAffine(), |
46
|
|
|
... ] |
47
|
|
|
>>> transform = tio.Compose(transforms) |
48
|
|
|
>>> subjects_dataset = tio.SubjectsDataset(subjects_list, transform=transform) |
49
|
|
|
>>> subject = subjects_dataset[0] |
50
|
|
|
|
51
|
|
|
.. _NiBabel: https://nipy.org/nibabel/#nibabel |
52
|
|
|
.. _SimpleITK: https://itk.org/Wiki/ITK/FAQ#What_3D_file_formats_can_ITK_import_and_export.3F |
53
|
|
|
.. _DICOM: https://www.dicomstandard.org/ |
54
|
|
|
.. _affine matrix: https://nipy.org/nibabel/coordinate_systems.html |
55
|
|
|
|
56
|
|
|
.. tip:: To quickly iterate over the subjects without loading the images, |
57
|
|
|
use :meth:`dry_iter()`. |
58
|
|
|
""" # noqa: E501 |
59
|
|
|
|
60
|
|
|
def __init__( |
61
|
|
|
self, |
62
|
|
|
subjects: Sequence[Subject], |
63
|
|
|
transform: Optional[Callable] = None, |
64
|
|
|
load_getitem: bool = True, |
65
|
|
|
): |
66
|
|
|
self._parse_subjects_list(subjects) |
67
|
|
|
self._subjects = subjects |
68
|
|
|
self._transform: Optional[Callable] |
69
|
|
|
self.set_transform(transform) |
70
|
|
|
self.load_getitem = load_getitem |
71
|
|
|
|
72
|
|
|
def __len__(self): |
73
|
|
|
return len(self._subjects) |
74
|
|
|
|
75
|
|
|
def __getitem__(self, index: int) -> Subject: |
76
|
|
|
if not isinstance(index, int): |
77
|
|
|
raise ValueError(f'Index "{index}" must be int, not {type(index)}') |
78
|
|
|
subject = self._subjects[index] |
79
|
|
|
subject = copy.deepcopy(subject) # cheap since images not loaded yet |
80
|
|
|
if self.load_getitem: |
81
|
|
|
subject.load() |
82
|
|
|
|
83
|
|
|
# Apply transform (this is usually the bottleneck) |
84
|
|
|
if self._transform is not None: |
85
|
|
|
subject = self._transform(subject) |
86
|
|
|
return subject |
87
|
|
|
|
88
|
|
|
def dry_iter(self): |
89
|
|
|
"""Return the internal list of subjects. |
90
|
|
|
|
91
|
|
|
This can be used to iterate over the subjects without loading the data |
92
|
|
|
and applying any transforms:: |
93
|
|
|
|
94
|
|
|
>>> names = [subject.name for subject in dataset.dry_iter()] |
95
|
|
|
""" |
96
|
|
|
return self._subjects |
97
|
|
|
|
98
|
|
|
def set_transform(self, transform: Optional[Callable]) -> None: |
99
|
|
|
"""Set the :attr:`transform` attribute. |
100
|
|
|
|
101
|
|
|
Args: |
102
|
|
|
transform: Callable object, typically an subclass of |
103
|
|
|
:class:`torchio.transforms.Transform`. |
104
|
|
|
""" |
105
|
|
|
if transform is not None and not callable(transform): |
106
|
|
|
message = ( |
107
|
|
|
'The transform must be a callable object,' |
108
|
|
|
f' but it has type {type(transform)}' |
109
|
|
|
) |
110
|
|
|
raise ValueError(message) |
111
|
|
|
self._transform = transform |
112
|
|
|
|
113
|
|
|
@staticmethod |
114
|
|
|
def _parse_subjects_list(subjects_list: Iterable[Subject]) -> None: |
115
|
|
|
# Check that it's an iterable |
116
|
|
|
try: |
117
|
|
|
iter(subjects_list) |
118
|
|
|
except TypeError as e: |
119
|
|
|
message = ( |
120
|
|
|
f'Subject list must be an iterable, not {type(subjects_list)}' |
121
|
|
|
) |
122
|
|
|
raise TypeError(message) from e |
123
|
|
|
|
124
|
|
|
# Check that it's not empty |
125
|
|
|
if not subjects_list: |
126
|
|
|
raise ValueError('Subjects list is empty') |
127
|
|
|
|
128
|
|
|
# Check each element |
129
|
|
|
for subject in subjects_list: |
130
|
|
|
if not isinstance(subject, Subject): |
131
|
|
|
message = ( |
132
|
|
|
'Subjects list must contain instances of torchio.Subject,' |
133
|
|
|
f' not "{type(subject)}"' |
134
|
|
|
) |
135
|
|
|
raise TypeError(message) |
136
|
|
|
|