|
1
|
|
|
import os |
|
2
|
|
|
import ast |
|
3
|
|
|
import gzip |
|
4
|
|
|
import shutil |
|
5
|
|
|
import tempfile |
|
6
|
|
|
from pathlib import Path |
|
7
|
|
|
from typing import Union, Iterable, Tuple, Any, Optional, List, Sequence |
|
8
|
|
|
|
|
9
|
|
|
from torch.utils.data._utils.collate import default_collate |
|
10
|
|
|
import numpy as np |
|
11
|
|
|
import nibabel as nib |
|
12
|
|
|
import SimpleITK as sitk |
|
13
|
|
|
from tqdm import trange |
|
14
|
|
|
|
|
15
|
|
|
from .constants import INTENSITY |
|
16
|
|
|
from .typing import TypeNumber, TypePath |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
def to_tuple( |
|
20
|
|
|
value: Union[TypeNumber, Iterable[TypeNumber]], |
|
21
|
|
|
length: int = 1, |
|
22
|
|
|
) -> Tuple[TypeNumber, ...]: |
|
23
|
|
|
""" |
|
24
|
|
|
to_tuple(1, length=1) -> (1,) |
|
25
|
|
|
to_tuple(1, length=3) -> (1, 1, 1) |
|
26
|
|
|
|
|
27
|
|
|
If value is an iterable, n is ignored and tuple(value) is returned |
|
28
|
|
|
to_tuple((1,), length=1) -> (1,) |
|
29
|
|
|
to_tuple((1, 2), length=1) -> (1, 2) |
|
30
|
|
|
to_tuple([1, 2], length=3) -> (1, 2) |
|
31
|
|
|
""" |
|
32
|
|
|
try: |
|
33
|
|
|
iter(value) |
|
34
|
|
|
value = tuple(value) |
|
35
|
|
|
except TypeError: |
|
36
|
|
|
value = length * (value,) |
|
37
|
|
|
return value |
|
38
|
|
|
|
|
39
|
|
|
|
|
40
|
|
|
def get_stem( |
|
41
|
|
|
path: Union[TypePath, List[TypePath]] |
|
42
|
|
|
) -> Union[str, List[str]]: |
|
43
|
|
|
""" |
|
44
|
|
|
'/home/user/image.nii.gz' -> 'image' |
|
45
|
|
|
""" |
|
46
|
|
|
def _get_stem(path_string): |
|
47
|
|
|
return Path(path_string).name.split('.')[0] |
|
48
|
|
|
if isinstance(path, (str, Path)): |
|
49
|
|
|
return _get_stem(path) |
|
50
|
|
|
return [_get_stem(p) for p in path] |
|
51
|
|
|
|
|
52
|
|
|
|
|
53
|
|
|
def create_dummy_dataset( |
|
54
|
|
|
num_images: int, |
|
55
|
|
|
size_range: Tuple[int, int], |
|
56
|
|
|
directory: Optional[TypePath] = None, |
|
57
|
|
|
suffix: str = '.nii.gz', |
|
58
|
|
|
force: bool = False, |
|
59
|
|
|
verbose: bool = False, |
|
60
|
|
|
): |
|
61
|
|
|
from .data import ScalarImage, LabelMap, Subject |
|
62
|
|
|
output_dir = tempfile.gettempdir() if directory is None else directory |
|
63
|
|
|
output_dir = Path(output_dir) |
|
64
|
|
|
images_dir = output_dir / 'dummy_images' |
|
65
|
|
|
labels_dir = output_dir / 'dummy_labels' |
|
66
|
|
|
|
|
67
|
|
|
if force: |
|
68
|
|
|
shutil.rmtree(images_dir) |
|
69
|
|
|
shutil.rmtree(labels_dir) |
|
70
|
|
|
|
|
71
|
|
|
subjects: List[Subject] = [] |
|
72
|
|
|
if images_dir.is_dir(): |
|
73
|
|
|
for i in trange(num_images): |
|
74
|
|
|
image_path = images_dir / f'image_{i}{suffix}' |
|
75
|
|
|
label_path = labels_dir / f'label_{i}{suffix}' |
|
76
|
|
|
subject = Subject( |
|
77
|
|
|
one_modality=ScalarImage(image_path), |
|
78
|
|
|
segmentation=LabelMap(label_path), |
|
79
|
|
|
) |
|
80
|
|
|
subjects.append(subject) |
|
81
|
|
|
else: |
|
82
|
|
|
images_dir.mkdir(exist_ok=True, parents=True) |
|
83
|
|
|
labels_dir.mkdir(exist_ok=True, parents=True) |
|
84
|
|
|
if verbose: |
|
85
|
|
|
print('Creating dummy dataset...') # noqa: T001 |
|
86
|
|
|
iterable = trange(num_images) |
|
87
|
|
|
else: |
|
88
|
|
|
iterable = range(num_images) |
|
89
|
|
|
for i in iterable: |
|
90
|
|
|
shape = np.random.randint(*size_range, size=3) |
|
91
|
|
|
affine = np.eye(4) |
|
92
|
|
|
image = np.random.rand(*shape) |
|
93
|
|
|
label = np.ones_like(image) |
|
94
|
|
|
label[image < 0.33] = 0 |
|
95
|
|
|
label[image > 0.66] = 2 |
|
96
|
|
|
image *= 255 |
|
97
|
|
|
|
|
98
|
|
|
image_path = images_dir / f'image_{i}{suffix}' |
|
99
|
|
|
nii = nib.Nifti1Image(image.astype(np.uint8), affine) |
|
100
|
|
|
nii.to_filename(str(image_path)) |
|
101
|
|
|
|
|
102
|
|
|
label_path = labels_dir / f'label_{i}{suffix}' |
|
103
|
|
|
nii = nib.Nifti1Image(label.astype(np.uint8), affine) |
|
104
|
|
|
nii.to_filename(str(label_path)) |
|
105
|
|
|
|
|
106
|
|
|
subject = Subject( |
|
107
|
|
|
one_modality=ScalarImage(image_path), |
|
108
|
|
|
segmentation=LabelMap(label_path), |
|
109
|
|
|
) |
|
110
|
|
|
subjects.append(subject) |
|
111
|
|
|
return subjects |
|
112
|
|
|
|
|
113
|
|
|
|
|
114
|
|
|
def apply_transform_to_file( |
|
115
|
|
|
input_path: TypePath, |
|
116
|
|
|
transform, # : Transform seems to create a circular import |
|
117
|
|
|
output_path: TypePath, |
|
118
|
|
|
type: str = INTENSITY, # noqa: A002 |
|
119
|
|
|
verbose: bool = False, |
|
120
|
|
|
): |
|
121
|
|
|
from . import Image, Subject |
|
122
|
|
|
subject = Subject(image=Image(input_path, type=type)) |
|
123
|
|
|
transformed = transform(subject) |
|
124
|
|
|
transformed.image.save(output_path) |
|
125
|
|
|
if verbose and transformed.history: |
|
126
|
|
|
print('Applied transform:', transformed.history[0]) # noqa: T001 |
|
127
|
|
|
|
|
128
|
|
|
|
|
129
|
|
|
def guess_type(string: str) -> Any: |
|
130
|
|
|
# Adapted from |
|
131
|
|
|
# https://www.reddit.com/r/learnpython/comments/4599hl/module_to_guess_type_from_a_string/czw3f5s |
|
132
|
|
|
string = string.replace(' ', '') |
|
133
|
|
|
try: |
|
134
|
|
|
value = ast.literal_eval(string) |
|
135
|
|
|
except ValueError: |
|
136
|
|
|
result_type = str |
|
137
|
|
|
else: |
|
138
|
|
|
result_type = type(value) |
|
139
|
|
|
if result_type in (list, tuple): |
|
140
|
|
|
string = string[1:-1] # remove brackets |
|
141
|
|
|
split = string.split(',') |
|
142
|
|
|
list_result = [guess_type(n) for n in split] |
|
143
|
|
|
value = tuple(list_result) if result_type is tuple else list_result |
|
144
|
|
|
return value |
|
145
|
|
|
try: |
|
146
|
|
|
value = result_type(string) |
|
147
|
|
|
except TypeError: |
|
148
|
|
|
value = None |
|
149
|
|
|
return value |
|
150
|
|
|
|
|
151
|
|
|
|
|
152
|
|
|
def get_torchio_cache_dir(): |
|
153
|
|
|
return Path('~/.cache/torchio').expanduser() |
|
154
|
|
|
|
|
155
|
|
|
|
|
156
|
|
|
def round_up(value: float) -> int: |
|
157
|
|
|
"""Round half towards infinity. |
|
158
|
|
|
|
|
159
|
|
|
Args: |
|
160
|
|
|
value: The value to round. |
|
161
|
|
|
|
|
162
|
|
|
Example: |
|
163
|
|
|
|
|
164
|
|
|
>>> round(2.5) |
|
165
|
|
|
2 |
|
166
|
|
|
>>> round(3.5) |
|
167
|
|
|
4 |
|
168
|
|
|
>>> round_up(2.5) |
|
169
|
|
|
3 |
|
170
|
|
|
>>> round_up(3.5) |
|
171
|
|
|
4 |
|
172
|
|
|
|
|
173
|
|
|
""" |
|
174
|
|
|
return int(np.floor(value + 0.5)) |
|
175
|
|
|
|
|
176
|
|
|
|
|
177
|
|
|
def compress(input_path, output_path): |
|
178
|
|
|
with open(input_path, 'rb') as f_in: |
|
179
|
|
|
with gzip.open(output_path, 'wb') as f_out: |
|
180
|
|
|
shutil.copyfileobj(f_in, f_out) |
|
181
|
|
|
|
|
182
|
|
|
|
|
183
|
|
|
def check_sequence(sequence: Sequence, name: str): |
|
184
|
|
|
try: |
|
185
|
|
|
iter(sequence) |
|
186
|
|
|
except TypeError: |
|
187
|
|
|
message = f'"{name}" must be a sequence, not {type(name)}' |
|
188
|
|
|
raise TypeError(message) |
|
189
|
|
|
|
|
190
|
|
|
|
|
191
|
|
|
def get_major_sitk_version() -> int: |
|
192
|
|
|
# This attribute was added in version 2 |
|
193
|
|
|
# https://github.com/SimpleITK/SimpleITK/pull/1171 |
|
194
|
|
|
version = getattr(sitk, '__version__', None) |
|
195
|
|
|
major_version = 1 if version is None else 2 |
|
196
|
|
|
return major_version |
|
197
|
|
|
|
|
198
|
|
|
|
|
199
|
|
|
def history_collate(batch: Sequence, collate_transforms=True): |
|
200
|
|
|
attr = 'history' if collate_transforms else 'applied_transforms' |
|
201
|
|
|
# Adapted from |
|
202
|
|
|
# https://github.com/romainVala/torchQC/blob/master/segmentation/collate_functions.py |
|
203
|
|
|
from .data import Subject |
|
204
|
|
|
first_element = batch[0] |
|
205
|
|
|
if isinstance(first_element, Subject): |
|
206
|
|
|
dictionary = { |
|
207
|
|
|
key: default_collate([d[key] for d in batch]) |
|
208
|
|
|
for key in first_element |
|
209
|
|
|
} |
|
210
|
|
|
if hasattr(first_element, attr): |
|
211
|
|
|
dictionary.update({attr: [getattr(d, attr) for d in batch]}) |
|
212
|
|
|
return dictionary |
|
213
|
|
|
|
|
214
|
|
|
|
|
215
|
|
|
# Adapted from torchvision, removing print statements |
|
216
|
|
|
def download_and_extract_archive( |
|
217
|
|
|
url: str, |
|
218
|
|
|
download_root: TypePath, |
|
219
|
|
|
extract_root: Optional[TypePath] = None, |
|
220
|
|
|
filename: Optional[TypePath] = None, |
|
221
|
|
|
md5: str = None, |
|
222
|
|
|
remove_finished: bool = False, |
|
223
|
|
|
) -> None: |
|
224
|
|
|
download_root = os.path.expanduser(download_root) |
|
225
|
|
|
if extract_root is None: |
|
226
|
|
|
extract_root = download_root |
|
227
|
|
|
if not filename: |
|
228
|
|
|
filename = os.path.basename(url) |
|
229
|
|
|
download_url(url, download_root, filename, md5) |
|
230
|
|
|
archive = os.path.join(download_root, filename) |
|
231
|
|
|
from torchvision.datasets.utils import extract_archive |
|
232
|
|
|
extract_archive(archive, extract_root, remove_finished) |
|
233
|
|
|
|
|
234
|
|
|
|
|
235
|
|
|
# Adapted from torchvision, removing print statements |
|
236
|
|
|
def download_url( |
|
237
|
|
|
url: str, |
|
238
|
|
|
root: TypePath, |
|
239
|
|
|
filename: Optional[TypePath] = None, |
|
240
|
|
|
md5: str = None, |
|
241
|
|
|
) -> None: |
|
242
|
|
|
"""Download a file from a url and place it in root. |
|
243
|
|
|
|
|
244
|
|
|
Args: |
|
245
|
|
|
url: URL to download file from |
|
246
|
|
|
root: Directory to place downloaded file in |
|
247
|
|
|
filename: Name to save the file under. |
|
248
|
|
|
If ``None``, use the basename of the URL |
|
249
|
|
|
md5: MD5 checksum of the download. If None, do not check |
|
250
|
|
|
""" |
|
251
|
|
|
import urllib |
|
252
|
|
|
from torchvision.datasets.utils import check_integrity, gen_bar_updater |
|
253
|
|
|
|
|
254
|
|
|
root = os.path.expanduser(root) |
|
255
|
|
|
if not filename: |
|
256
|
|
|
filename = os.path.basename(url) |
|
257
|
|
|
fpath = os.path.join(root, filename) |
|
258
|
|
|
os.makedirs(root, exist_ok=True) |
|
259
|
|
|
# check if file is already present locally |
|
260
|
|
|
if not check_integrity(fpath, md5): |
|
261
|
|
|
try: |
|
262
|
|
|
print('Downloading ' + url + ' to ' + fpath) # noqa: T001 |
|
263
|
|
|
urllib.request.urlretrieve( |
|
264
|
|
|
url, fpath, |
|
265
|
|
|
reporthook=gen_bar_updater() |
|
266
|
|
|
) |
|
267
|
|
|
except (urllib.error.URLError, OSError) as e: |
|
268
|
|
|
if url[:5] == 'https': |
|
269
|
|
|
url = url.replace('https:', 'http:') |
|
270
|
|
|
message = ( |
|
271
|
|
|
'Failed download. Trying https -> http instead.' |
|
272
|
|
|
' Downloading ' + url + ' to ' + fpath |
|
273
|
|
|
) |
|
274
|
|
|
print(message) # noqa: T001 |
|
275
|
|
|
urllib.request.urlretrieve( |
|
276
|
|
|
url, fpath, |
|
277
|
|
|
reporthook=gen_bar_updater() |
|
278
|
|
|
) |
|
279
|
|
|
else: |
|
280
|
|
|
raise e |
|
281
|
|
|
# check integrity of downloaded file |
|
282
|
|
|
if not check_integrity(fpath, md5): |
|
283
|
|
|
raise RuntimeError('File not found or corrupted.') |
|
284
|
|
|
|