1
|
|
|
import tempfile |
2
|
|
|
from pathlib import Path |
3
|
|
|
|
4
|
|
|
import torch |
5
|
|
|
import pytest |
6
|
|
|
import numpy as np |
7
|
|
|
import SimpleITK as sitk |
8
|
|
|
|
9
|
|
|
from ..utils import TorchioTestCase |
10
|
|
|
from torchio.data import io, ScalarImage |
11
|
|
|
from torchio.data.io import ensure_4d, nib_to_sitk, sitk_to_nib |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
class TestIO(TorchioTestCase): |
15
|
|
|
"""Tests for `io` module.""" |
16
|
|
|
def setUp(self): |
17
|
|
|
super().setUp() |
18
|
|
|
self.nii_path = self.get_image_path('read_image') |
19
|
|
|
self.dicom_dir = self.get_tests_data_dir() / 'dicom' |
20
|
|
|
self.dicom_path = self.dicom_dir / 'IMG0001.dcm' |
21
|
|
|
string = ( |
22
|
|
|
'1.5 0.18088 -0.124887 0.65072 ' |
23
|
|
|
'-0.20025 0.965639 -0.165653 -11.6452 ' |
24
|
|
|
'0.0906326 0.18661 0.978245 11.4002 ' |
25
|
|
|
'0 0 0 1 ' |
26
|
|
|
) |
27
|
|
|
tensor = torch.from_numpy(np.fromstring(string, sep=' ').reshape(4, 4)) |
28
|
|
|
self.matrix = tensor |
29
|
|
|
|
30
|
|
|
def test_read_image(self): |
31
|
|
|
# I need to find something readable by nib but not sitk |
32
|
|
|
io.read_image(self.nii_path) |
33
|
|
|
|
34
|
|
|
def test_save_rgb(self): |
35
|
|
|
im = ScalarImage(tensor=torch.rand(1, 4, 5, 1)) |
36
|
|
|
with self.assertWarns(RuntimeWarning): |
37
|
|
|
im.save(self.dir / 'test.jpg') |
38
|
|
|
|
39
|
|
|
def test_read_dicom_file(self): |
40
|
|
|
tensor, _ = io.read_image(self.dicom_path) |
41
|
|
|
self.assertEqual(tuple(tensor.shape), (1, 88, 128, 1)) |
42
|
|
|
|
43
|
|
|
def test_read_dicom_dir(self): |
44
|
|
|
tensor, _ = io.read_image(self.dicom_dir) |
45
|
|
|
self.assertEqual(tuple(tensor.shape), (1, 88, 128, 17)) |
46
|
|
|
|
47
|
|
|
def test_dicom_dir_missing(self): |
48
|
|
|
with self.assertRaises(FileNotFoundError): |
49
|
|
|
io._read_dicom('missing') |
50
|
|
|
|
51
|
|
|
def test_dicom_dir_no_files(self): |
52
|
|
|
empty = self.dir / 'empty' |
53
|
|
|
empty.mkdir() |
54
|
|
|
with self.assertRaises(FileNotFoundError): |
55
|
|
|
io._read_dicom(empty) |
56
|
|
|
|
57
|
|
|
def write_read_matrix(self, suffix): |
58
|
|
|
out_path = self.dir / f'matrix{suffix}' |
59
|
|
|
io.write_matrix(self.matrix, out_path) |
60
|
|
|
matrix = io.read_matrix(out_path) |
61
|
|
|
assert torch.allclose(matrix, self.matrix) |
62
|
|
|
|
63
|
|
|
def test_matrix_itk(self): |
64
|
|
|
self.write_read_matrix('.tfm') |
65
|
|
|
self.write_read_matrix('.h5') |
66
|
|
|
|
67
|
|
|
def test_matrix_txt(self): |
68
|
|
|
self.write_read_matrix('.txt') |
69
|
|
|
|
70
|
|
|
def test_ensure_4d_5d(self): |
71
|
|
|
tensor = torch.rand(3, 4, 5, 1, 2) |
72
|
|
|
assert ensure_4d(tensor).shape == (2, 3, 4, 5) |
73
|
|
|
|
74
|
|
|
def test_ensure_4d_5d_t_gt_1(self): |
75
|
|
|
tensor = torch.rand(3, 4, 5, 2, 2) |
76
|
|
|
with self.assertRaises(ValueError): |
77
|
|
|
ensure_4d(tensor) |
78
|
|
|
|
79
|
|
|
def test_ensure_4d_2d(self): |
80
|
|
|
tensor = torch.rand(4, 5) |
81
|
|
|
assert ensure_4d(tensor).shape == (1, 4, 5, 1) |
82
|
|
|
|
83
|
|
|
def test_ensure_4d_2d_3dims_rgb_first(self): |
84
|
|
|
tensor = torch.rand(3, 4, 5) |
85
|
|
|
assert ensure_4d(tensor).shape == (3, 4, 5, 1) |
86
|
|
|
|
87
|
|
|
def test_ensure_4d_2d_3dims_rgb_last(self): |
88
|
|
|
tensor = torch.rand(4, 5, 3) |
89
|
|
|
assert ensure_4d(tensor).shape == (3, 4, 5, 1) |
90
|
|
|
|
91
|
|
|
def test_ensure_4d_3d(self): |
92
|
|
|
tensor = torch.rand(4, 5, 6) |
93
|
|
|
assert ensure_4d(tensor).shape == (1, 4, 5, 6) |
94
|
|
|
|
95
|
|
|
def test_ensure_4d_2_spatial_dims(self): |
96
|
|
|
tensor = torch.rand(4, 5, 6) |
97
|
|
|
assert ensure_4d(tensor, num_spatial_dims=2).shape == (4, 5, 6, 1) |
98
|
|
|
|
99
|
|
|
def test_ensure_4d_3_spatial_dims(self): |
100
|
|
|
tensor = torch.rand(4, 5, 6) |
101
|
|
|
assert ensure_4d(tensor, num_spatial_dims=3).shape == (1, 4, 5, 6) |
102
|
|
|
|
103
|
|
|
def test_ensure_4d_nd_not_supported(self): |
104
|
|
|
tensor = torch.rand(1, 2, 3, 4, 5) |
105
|
|
|
with self.assertRaises(ValueError): |
106
|
|
|
ensure_4d(tensor) |
107
|
|
|
|
108
|
|
|
def test_sitk_to_nib(self): |
109
|
|
|
data = np.random.rand(10, 12) |
110
|
|
|
image = sitk.GetImageFromArray(data) |
111
|
|
|
tensor, affine = sitk_to_nib(image) |
112
|
|
|
self.assertAlmostEqual(data.sum(), tensor.sum()) |
113
|
|
|
|
114
|
|
|
|
115
|
|
|
# This doesn't work as a method of the class |
116
|
|
|
libs = 'sitk', 'nibabel' |
117
|
|
|
parameters = [] |
118
|
|
|
for save_lib in libs: |
119
|
|
|
for load_lib in libs: |
120
|
|
|
for dims in 2, 3, 4: |
121
|
|
|
parameters.append((save_lib, load_lib, dims)) |
122
|
|
|
|
123
|
|
|
|
124
|
|
|
@pytest.mark.parametrize(('save_lib', 'load_lib', 'dims'), parameters) |
125
|
|
|
def test_write_nd_with_a_read_it_with_b(save_lib, load_lib, dims): |
126
|
|
|
shape = [1, 4, 5, 6] |
127
|
|
|
if dims == 2: |
128
|
|
|
shape[-1] = 1 |
129
|
|
|
elif dims == 4: |
130
|
|
|
shape[0] = 2 |
131
|
|
|
tensor = torch.randn(*shape) |
132
|
|
|
affine = np.eye(4) |
133
|
|
|
tempdir = Path(tempfile.gettempdir()) / '.torchio_tests' |
134
|
|
|
tempdir.mkdir(exist_ok=True) |
135
|
|
|
path = tempdir / 'test_io.nii' |
136
|
|
|
save_function = getattr(io, f'_write_{save_lib}') |
137
|
|
|
load_function = getattr(io, f'_read_{save_lib}') |
138
|
|
|
save_function(tensor, affine, path) |
139
|
|
|
loaded_tensor, loaded_affine = load_function(path) |
140
|
|
|
TorchioTestCase.assertTensorEqual( |
141
|
|
|
tensor.squeeze(), loaded_tensor.squeeze(), |
142
|
|
|
f'Save lib: {save_lib}; load lib: {load_lib}; dims: {dims}' |
143
|
|
|
) |
144
|
|
|
TorchioTestCase.assertTensorEqual(affine, loaded_affine) |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
class TestNibabelToSimpleITK(TorchioTestCase): |
148
|
|
|
|
149
|
|
|
def setUp(self): |
150
|
|
|
super().setUp() |
151
|
|
|
self.affine = np.eye(4) |
152
|
|
|
|
153
|
|
|
def test_wrong_num_dims(self): |
154
|
|
|
with self.assertRaises(ValueError): |
155
|
|
|
nib_to_sitk(np.random.rand(10, 10), self.affine) |
156
|
|
|
|
157
|
|
|
def test_2d_single(self): |
158
|
|
|
data = np.random.rand(1, 10, 12, 1) |
159
|
|
|
image = nib_to_sitk(data, self.affine) |
160
|
|
|
assert image.GetDimension() == 2 |
161
|
|
|
assert image.GetSize() == (10, 12) |
162
|
|
|
assert image.GetNumberOfComponentsPerPixel() == 1 |
163
|
|
|
|
164
|
|
|
def test_2d_multi(self): |
165
|
|
|
data = np.random.rand(5, 10, 12, 1) |
166
|
|
|
image = nib_to_sitk(data, self.affine) |
167
|
|
|
assert image.GetDimension() == 2 |
168
|
|
|
assert image.GetSize() == (10, 12) |
169
|
|
|
assert image.GetNumberOfComponentsPerPixel() == 5 |
170
|
|
|
|
171
|
|
|
def test_2d_3d_single(self): |
172
|
|
|
data = np.random.rand(1, 10, 12, 1) |
173
|
|
|
image = nib_to_sitk(data, self.affine, force_3d=True) |
174
|
|
|
assert image.GetDimension() == 3 |
175
|
|
|
assert image.GetSize() == (10, 12, 1) |
176
|
|
|
assert image.GetNumberOfComponentsPerPixel() == 1 |
177
|
|
|
|
178
|
|
|
def test_2d_3d_multi(self): |
179
|
|
|
data = np.random.rand(5, 10, 12, 1) |
180
|
|
|
image = nib_to_sitk(data, self.affine, force_3d=True) |
181
|
|
|
assert image.GetDimension() == 3 |
182
|
|
|
assert image.GetSize() == (10, 12, 1) |
183
|
|
|
assert image.GetNumberOfComponentsPerPixel() == 5 |
184
|
|
|
|
185
|
|
|
def test_3d_single(self): |
186
|
|
|
data = np.random.rand(1, 8, 10, 12) |
187
|
|
|
image = nib_to_sitk(data, self.affine) |
188
|
|
|
assert image.GetDimension() == 3 |
189
|
|
|
assert image.GetSize() == (8, 10, 12) |
190
|
|
|
assert image.GetNumberOfComponentsPerPixel() == 1 |
191
|
|
|
|
192
|
|
|
def test_3d_multi(self): |
193
|
|
|
data = np.random.rand(5, 8, 10, 12) |
194
|
|
|
image = nib_to_sitk(data, self.affine) |
195
|
|
|
assert image.GetDimension() == 3 |
196
|
|
|
assert image.GetSize() == (8, 10, 12) |
197
|
|
|
assert image.GetNumberOfComponentsPerPixel() == 5 |
198
|
|
|
|