|
1
|
|
|
from numbers import Number |
|
2
|
|
|
from typing import Tuple, Optional, Sequence, Union |
|
3
|
|
|
|
|
4
|
|
|
import torch |
|
5
|
|
|
import numpy as np |
|
6
|
|
|
import SimpleITK as sitk |
|
7
|
|
|
|
|
8
|
|
|
from ....data.io import nib_to_sitk |
|
9
|
|
|
from ....data.subject import Subject |
|
10
|
|
|
from ....constants import INTENSITY, TYPE |
|
11
|
|
|
from ....utils import get_major_sitk_version, to_tuple |
|
12
|
|
|
from ....typing import TypeRangeFloat, TypeSextetFloat, TypeTripletFloat |
|
13
|
|
|
from ... import SpatialTransform |
|
14
|
|
|
from .. import RandomTransform |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
TypeOneToSixFloat = Union[TypeRangeFloat, TypeTripletFloat, TypeSextetFloat] |
|
18
|
|
|
|
|
19
|
|
|
|
|
20
|
|
|
class RandomAffine(RandomTransform, SpatialTransform): |
|
21
|
|
|
r"""Apply a random affine transformation and resample the image. |
|
22
|
|
|
|
|
23
|
|
|
Args: |
|
24
|
|
|
scales: Tuple :math:`(a_1, b_1, a_2, b_2, a_3, b_3)` defining the |
|
25
|
|
|
scaling ranges. |
|
26
|
|
|
The scaling values along each dimension are :math:`(s_1, s_2, s_3)`, |
|
27
|
|
|
where :math:`s_i \sim \mathcal{U}(a_i, b_i)`. |
|
28
|
|
|
If two values :math:`(a, b)` are provided, |
|
29
|
|
|
then :math:`s_i \sim \mathcal{U}(a, b)`. |
|
30
|
|
|
If only one value :math:`x` is provided, |
|
31
|
|
|
then :math:`s_i \sim \mathcal{U}(1 - x, 1 + x)`. |
|
32
|
|
|
If three values :math:`(x_1, x_2, x_3)` are provided, |
|
33
|
|
|
then :math:`s_i \sim \mathcal{U}(1 - x_i, 1 + x_i)`. |
|
34
|
|
|
For example, using ``scales=(0.5, 0.5)`` will zoom out the image, |
|
35
|
|
|
making the objects inside look twice as small while preserving |
|
36
|
|
|
the physical size and position of the image bounds. |
|
37
|
|
|
degrees: Tuple :math:`(a_1, b_1, a_2, b_2, a_3, b_3)` defining the |
|
38
|
|
|
rotation ranges in degrees. |
|
39
|
|
|
Rotation angles around each axis are |
|
40
|
|
|
:math:`(\theta_1, \theta_2, \theta_3)`, |
|
41
|
|
|
where :math:`\theta_i \sim \mathcal{U}(a_i, b_i)`. |
|
42
|
|
|
If two values :math:`(a, b)` are provided, |
|
43
|
|
|
then :math:`\theta_i \sim \mathcal{U}(a, b)`. |
|
44
|
|
|
If only one value :math:`x` is provided, |
|
45
|
|
|
then :math:`\theta_i \sim \mathcal{U}(-x, x)`. |
|
46
|
|
|
If three values :math:`(x_1, x_2, x_3)` are provided, |
|
47
|
|
|
then :math:`\theta_i \sim \mathcal{U}(-x_i, x_i)`. |
|
48
|
|
|
translation: Tuple :math:`(a_1, b_1, a_2, b_2, a_3, b_3)` defining the |
|
49
|
|
|
translation ranges in mm. |
|
50
|
|
|
Translation along each axis is :math:`(t_1, t_2, t_3)`, |
|
51
|
|
|
where :math:`t_i \sim \mathcal{U}(a_i, b_i)`. |
|
52
|
|
|
If two values :math:`(a, b)` are provided, |
|
53
|
|
|
then :math:`t_i \sim \mathcal{U}(a, b)`. |
|
54
|
|
|
If only one value :math:`x` is provided, |
|
55
|
|
|
then :math:`t_i \sim \mathcal{U}(-x, x)`. |
|
56
|
|
|
If three values :math:`(x_1, x_2, x_3)` are provided, |
|
57
|
|
|
then :math:`t_i \sim \mathcal{U}(-x_i, x_i)`. |
|
58
|
|
|
isotropic: If ``True``, the scaling factor along all dimensions is the |
|
59
|
|
|
same, i.e. :math:`s_1 = s_2 = s_3`. |
|
60
|
|
|
center: If ``'image'``, rotations and scaling will be performed around |
|
61
|
|
|
the image center. If ``'origin'``, rotations and scaling will be |
|
62
|
|
|
performed around the origin in world coordinates. |
|
63
|
|
|
default_pad_value: As the image is rotated, some values near the |
|
64
|
|
|
borders will be undefined. |
|
65
|
|
|
If ``'minimum'``, the fill value will be the image minimum. |
|
66
|
|
|
If ``'mean'``, the fill value is the mean of the border values. |
|
67
|
|
|
If ``'otsu'``, the fill value is the mean of the values at the |
|
68
|
|
|
border that lie under an |
|
69
|
|
|
`Otsu threshold <https://ieeexplore.ieee.org/document/4310076>`_. |
|
70
|
|
|
If it is a number, that value will be used. |
|
71
|
|
|
image_interpolation: See :ref:`Interpolation`. |
|
72
|
|
|
**kwargs: See :class:`~torchio.transforms.Transform` for additional |
|
73
|
|
|
keyword arguments. |
|
74
|
|
|
|
|
75
|
|
|
Example: |
|
76
|
|
|
>>> import torchio as tio |
|
77
|
|
|
>>> subject = tio.datasets.Colin27() |
|
78
|
|
|
>>> transform = tio.RandomAffine( |
|
79
|
|
|
... scales=(0.9, 1.2), |
|
80
|
|
|
... degrees=10, |
|
81
|
|
|
... isotropic=True, |
|
82
|
|
|
... image_interpolation='nearest', |
|
83
|
|
|
... ) |
|
84
|
|
|
>>> transformed = transform(subject) |
|
85
|
|
|
|
|
86
|
|
|
From the command line:: |
|
87
|
|
|
|
|
88
|
|
|
$ torchio-transform t1.nii.gz RandomAffine --kwargs "scales=(0.9, 1.2) degrees=10 isotropic=True image_interpolation=nearest" --seed 42 affine_min.nii.gz |
|
89
|
|
|
|
|
90
|
|
|
""" |
|
91
|
|
|
def __init__( |
|
92
|
|
|
self, |
|
93
|
|
|
scales: TypeOneToSixFloat = 0.1, |
|
94
|
|
|
degrees: TypeOneToSixFloat = 10, |
|
95
|
|
|
translation: TypeOneToSixFloat = 0, |
|
96
|
|
|
isotropic: bool = False, |
|
97
|
|
|
center: str = 'image', |
|
98
|
|
|
default_pad_value: Union[str, float] = 'minimum', |
|
99
|
|
|
image_interpolation: str = 'linear', |
|
100
|
|
|
**kwargs |
|
101
|
|
|
): |
|
102
|
|
|
super().__init__(**kwargs) |
|
103
|
|
|
self.isotropic = isotropic |
|
104
|
|
|
_parse_scales_isotropic(scales, isotropic) |
|
105
|
|
|
self.scales = self.parse_params(scales, 1, 'scales', min_constraint=0) |
|
106
|
|
|
self.degrees = self.parse_params(degrees, 0, 'degrees') |
|
107
|
|
|
self.translation = self.parse_params(translation, 0, 'translation') |
|
108
|
|
|
if center not in ('image', 'origin'): |
|
109
|
|
|
message = ( |
|
110
|
|
|
'Center argument must be "image" or "origin",' |
|
111
|
|
|
f' not "{center}"' |
|
112
|
|
|
) |
|
113
|
|
|
raise ValueError(message) |
|
114
|
|
|
self.center = center |
|
115
|
|
|
self.default_pad_value = _parse_default_value(default_pad_value) |
|
116
|
|
|
self.image_interpolation = self.parse_interpolation(image_interpolation) |
|
117
|
|
|
|
|
118
|
|
|
def get_params( |
|
119
|
|
|
self, |
|
120
|
|
|
scales: TypeSextetFloat, |
|
121
|
|
|
degrees: TypeSextetFloat, |
|
122
|
|
|
translation: TypeSextetFloat, |
|
123
|
|
|
isotropic: bool, |
|
124
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
125
|
|
|
scaling_params = self.sample_uniform_sextet(scales) |
|
126
|
|
|
if isotropic: |
|
127
|
|
|
scaling_params.fill_(scaling_params[0]) |
|
128
|
|
|
rotation_params = self.sample_uniform_sextet(degrees) |
|
129
|
|
|
translation_params = self.sample_uniform_sextet(translation) |
|
130
|
|
|
return scaling_params, rotation_params, translation_params |
|
131
|
|
|
|
|
132
|
|
|
def apply_transform(self, subject: Subject) -> Subject: |
|
133
|
|
|
subject.check_consistent_spatial_shape() |
|
134
|
|
|
scaling_params, rotation_params, translation_params = self.get_params( |
|
135
|
|
|
self.scales, |
|
136
|
|
|
self.degrees, |
|
137
|
|
|
self.translation, |
|
138
|
|
|
self.isotropic, |
|
139
|
|
|
) |
|
140
|
|
|
arguments = dict( |
|
141
|
|
|
scales=scaling_params.tolist(), |
|
142
|
|
|
degrees=rotation_params.tolist(), |
|
143
|
|
|
translation=translation_params.tolist(), |
|
144
|
|
|
center=self.center, |
|
145
|
|
|
default_pad_value=self.default_pad_value, |
|
146
|
|
|
image_interpolation=self.image_interpolation, |
|
147
|
|
|
) |
|
148
|
|
|
transform = Affine(**self.add_include_exclude(arguments)) |
|
149
|
|
|
transformed = transform(subject) |
|
150
|
|
|
return transformed |
|
151
|
|
|
|
|
152
|
|
|
|
|
153
|
|
|
class Affine(SpatialTransform): |
|
154
|
|
|
r"""Apply affine transformation. |
|
155
|
|
|
|
|
156
|
|
|
Args: |
|
157
|
|
|
scales: Tuple :math:`(s_1, s_2, s_3)` defining the |
|
158
|
|
|
scaling values along each dimension. |
|
159
|
|
|
degrees: Tuple :math:`(\theta_1, \theta_2, \theta_3)` defining the |
|
160
|
|
|
rotation around each axis. |
|
161
|
|
|
translation: Tuple :math:`(t_1, t_2, t_3)` defining the |
|
162
|
|
|
translation in mm along each axis. |
|
163
|
|
|
center: If ``'image'``, rotations and scaling will be performed around |
|
164
|
|
|
the image center. If ``'origin'``, rotations and scaling will be |
|
165
|
|
|
performed around the origin in world coordinates. |
|
166
|
|
|
default_pad_value: As the image is rotated, some values near the |
|
167
|
|
|
borders will be undefined. |
|
168
|
|
|
If ``'minimum'``, the fill value will be the image minimum. |
|
169
|
|
|
If ``'mean'``, the fill value is the mean of the border values. |
|
170
|
|
|
If ``'otsu'``, the fill value is the mean of the values at the |
|
171
|
|
|
border that lie under an |
|
172
|
|
|
`Otsu threshold <https://ieeexplore.ieee.org/document/4310076>`_. |
|
173
|
|
|
If it is a number, that value will be used. |
|
174
|
|
|
image_interpolation: See :ref:`Interpolation`. |
|
175
|
|
|
**kwargs: See :class:`~torchio.transforms.Transform` for additional |
|
176
|
|
|
keyword arguments. |
|
177
|
|
|
""" |
|
178
|
|
|
def __init__( |
|
179
|
|
|
self, |
|
180
|
|
|
scales: TypeTripletFloat, |
|
181
|
|
|
degrees: TypeTripletFloat, |
|
182
|
|
|
translation: TypeTripletFloat, |
|
183
|
|
|
center: str = 'image', |
|
184
|
|
|
default_pad_value: Union[str, float] = 'minimum', |
|
185
|
|
|
image_interpolation: str = 'linear', |
|
186
|
|
|
**kwargs |
|
187
|
|
|
): |
|
188
|
|
|
super().__init__(**kwargs) |
|
189
|
|
|
self.scales = self.parse_params( |
|
190
|
|
|
scales, |
|
191
|
|
|
None, |
|
192
|
|
|
'scales', |
|
193
|
|
|
make_ranges=False, |
|
194
|
|
|
min_constraint=0, |
|
195
|
|
|
) |
|
196
|
|
|
self.degrees = self.parse_params( |
|
197
|
|
|
degrees, |
|
198
|
|
|
None, |
|
199
|
|
|
'degrees', |
|
200
|
|
|
make_ranges=False, |
|
201
|
|
|
) |
|
202
|
|
|
self.translation = self.parse_params( |
|
203
|
|
|
translation, |
|
204
|
|
|
None, |
|
205
|
|
|
'translation', |
|
206
|
|
|
make_ranges=False, |
|
207
|
|
|
) |
|
208
|
|
|
if center not in ('image', 'origin'): |
|
209
|
|
|
message = ( |
|
210
|
|
|
'Center argument must be "image" or "origin",' |
|
211
|
|
|
f' not "{center}"' |
|
212
|
|
|
) |
|
213
|
|
|
raise ValueError(message) |
|
214
|
|
|
self.center = center |
|
215
|
|
|
self.use_image_center = center == 'image' |
|
216
|
|
|
self.default_pad_value = _parse_default_value(default_pad_value) |
|
217
|
|
|
self.image_interpolation = self.parse_interpolation(image_interpolation) |
|
218
|
|
|
self.invert_transform = False |
|
219
|
|
|
self.args_names = ( |
|
220
|
|
|
'scales', |
|
221
|
|
|
'degrees', |
|
222
|
|
|
'translation', |
|
223
|
|
|
'center', |
|
224
|
|
|
'default_pad_value', |
|
225
|
|
|
'image_interpolation', |
|
226
|
|
|
) |
|
227
|
|
|
|
|
228
|
|
|
@staticmethod |
|
229
|
|
|
def _get_scaling_transform( |
|
230
|
|
|
scaling_params: Sequence[float], |
|
231
|
|
|
center_lps: Optional[TypeTripletFloat] = None, |
|
232
|
|
|
) -> sitk.ScaleTransform: |
|
233
|
|
|
# scaling_params are inverted so that they are more intuitive |
|
234
|
|
|
# For example, 1.5 means the objects look 1.5 times larger |
|
235
|
|
|
transform = sitk.ScaleTransform(3) |
|
236
|
|
|
scaling_params = 1 / np.array(scaling_params) |
|
237
|
|
|
transform.SetScale(scaling_params) |
|
238
|
|
|
if center_lps is not None: |
|
239
|
|
|
transform.SetCenter(center_lps) |
|
240
|
|
|
return transform |
|
241
|
|
|
|
|
242
|
|
|
@staticmethod |
|
243
|
|
|
def _get_rotation_transform( |
|
244
|
|
|
degrees: Sequence[float], |
|
245
|
|
|
translation: Sequence[float], |
|
246
|
|
|
center_lps: Optional[TypeTripletFloat] = None, |
|
247
|
|
|
) -> sitk.Euler3DTransform: |
|
248
|
|
|
transform = sitk.Euler3DTransform() |
|
249
|
|
|
radians = np.radians(degrees) |
|
250
|
|
|
transform.SetRotation(*radians) |
|
251
|
|
|
transform.SetTranslation(translation) |
|
252
|
|
|
if center_lps is not None: |
|
253
|
|
|
transform.SetCenter(center_lps) |
|
254
|
|
|
return transform |
|
255
|
|
|
|
|
256
|
|
|
def get_affine_transform(self, image): |
|
257
|
|
|
scaling = np.array(self.scales).copy() |
|
258
|
|
|
rotation = np.array(self.degrees).copy() |
|
259
|
|
|
translation = np.array(self.translation).copy() |
|
260
|
|
|
|
|
261
|
|
|
if image.is_2d(): |
|
262
|
|
|
scaling[2] = 1 |
|
263
|
|
|
rotation[:-1] = 0 |
|
264
|
|
|
|
|
265
|
|
|
if self.use_image_center: |
|
266
|
|
|
center_lps = image.get_center(lps=True) |
|
267
|
|
|
else: |
|
268
|
|
|
center_lps = None |
|
269
|
|
|
|
|
270
|
|
|
scaling_transform = self._get_scaling_transform( |
|
271
|
|
|
scaling, |
|
272
|
|
|
center_lps=center_lps, |
|
273
|
|
|
) |
|
274
|
|
|
rotation_transform = self._get_rotation_transform( |
|
275
|
|
|
rotation, |
|
276
|
|
|
translation, |
|
277
|
|
|
center_lps=center_lps, |
|
278
|
|
|
) |
|
279
|
|
|
|
|
280
|
|
|
sitk_major_version = get_major_sitk_version() |
|
281
|
|
|
if sitk_major_version == 1: |
|
282
|
|
|
transform = sitk.Transform(3, sitk.sitkComposite) |
|
283
|
|
|
transform.AddTransform(scaling_transform) |
|
284
|
|
|
transform.AddTransform(rotation_transform) |
|
285
|
|
|
elif sitk_major_version == 2: |
|
286
|
|
|
transforms = [scaling_transform, rotation_transform] |
|
287
|
|
|
transform = sitk.CompositeTransform(transforms) |
|
288
|
|
|
|
|
289
|
|
|
if self.invert_transform: |
|
290
|
|
|
transform = transform.GetInverse() |
|
|
|
|
|
|
291
|
|
|
|
|
292
|
|
|
return transform |
|
293
|
|
|
|
|
294
|
|
|
def apply_transform(self, subject: Subject) -> Subject: |
|
295
|
|
|
subject.check_consistent_spatial_shape() |
|
296
|
|
|
for image in self.get_images(subject): |
|
297
|
|
|
transform = self.get_affine_transform(image) |
|
298
|
|
|
transformed_tensors = [] |
|
299
|
|
|
for tensor in image.data: |
|
300
|
|
|
sitk_image = nib_to_sitk( |
|
301
|
|
|
tensor[np.newaxis], |
|
302
|
|
|
image.affine, |
|
303
|
|
|
force_3d=True, |
|
304
|
|
|
) |
|
305
|
|
|
if image[TYPE] != INTENSITY: |
|
306
|
|
|
interpolation = 'nearest' |
|
307
|
|
|
default_value = 0 |
|
308
|
|
|
else: |
|
309
|
|
|
interpolation = self.image_interpolation |
|
310
|
|
|
if self.default_pad_value == 'minimum': |
|
311
|
|
|
default_value = tensor.min().item() |
|
312
|
|
|
elif self.default_pad_value == 'mean': |
|
313
|
|
|
default_value = get_borders_mean( |
|
314
|
|
|
sitk_image, filter_otsu=False) |
|
315
|
|
|
elif self.default_pad_value == 'otsu': |
|
316
|
|
|
default_value = get_borders_mean( |
|
317
|
|
|
sitk_image, filter_otsu=True) |
|
318
|
|
|
else: |
|
319
|
|
|
default_value = self.default_pad_value |
|
320
|
|
|
transformed_tensor = self.apply_affine_transform( |
|
321
|
|
|
sitk_image, |
|
322
|
|
|
transform, |
|
323
|
|
|
interpolation, |
|
324
|
|
|
default_value, |
|
325
|
|
|
) |
|
326
|
|
|
transformed_tensors.append(transformed_tensor) |
|
327
|
|
|
image.set_data(torch.stack(transformed_tensors)) |
|
328
|
|
|
return subject |
|
329
|
|
|
|
|
330
|
|
|
def apply_affine_transform( |
|
331
|
|
|
self, |
|
332
|
|
|
sitk_image: sitk.Image, |
|
333
|
|
|
transform: sitk.Transform, |
|
334
|
|
|
interpolation: str, |
|
335
|
|
|
default_value: float, |
|
336
|
|
|
center_lps: Optional[TypeTripletFloat] = None, |
|
337
|
|
|
) -> torch.Tensor: |
|
338
|
|
|
floating = reference = sitk_image |
|
339
|
|
|
|
|
340
|
|
|
resampler = sitk.ResampleImageFilter() |
|
341
|
|
|
resampler.SetInterpolator(self.get_sitk_interpolator(interpolation)) |
|
342
|
|
|
resampler.SetReferenceImage(reference) |
|
343
|
|
|
resampler.SetDefaultPixelValue(float(default_value)) |
|
344
|
|
|
resampler.SetOutputPixelType(sitk.sitkFloat32) |
|
345
|
|
|
resampler.SetTransform(transform) |
|
346
|
|
|
resampled = resampler.Execute(floating) |
|
347
|
|
|
|
|
348
|
|
|
np_array = sitk.GetArrayFromImage(resampled) |
|
349
|
|
|
np_array = np_array.transpose() # ITK to NumPy |
|
350
|
|
|
tensor = torch.as_tensor(np_array) |
|
351
|
|
|
return tensor |
|
352
|
|
|
|
|
353
|
|
|
|
|
354
|
|
|
# flake8: noqa: E201, E203, E243 |
|
355
|
|
|
def get_borders_mean(image, filter_otsu=True): |
|
356
|
|
|
# pylint: disable=bad-whitespace |
|
357
|
|
|
array = sitk.GetArrayViewFromImage(image) |
|
358
|
|
|
borders_tuple = ( |
|
359
|
|
|
array[ 0, :, :], |
|
360
|
|
|
array[-1, :, :], |
|
361
|
|
|
array[ :, 0, :], |
|
362
|
|
|
array[ :, -1, :], |
|
363
|
|
|
array[ :, :, 0], |
|
364
|
|
|
array[ :, :, -1], |
|
365
|
|
|
) |
|
366
|
|
|
borders_flat = np.hstack([border.ravel() for border in borders_tuple]) |
|
367
|
|
|
if not filter_otsu: |
|
368
|
|
|
return borders_flat.mean() |
|
369
|
|
|
borders_reshaped = borders_flat.reshape(1, 1, -1) |
|
370
|
|
|
borders_image = sitk.GetImageFromArray(borders_reshaped) |
|
371
|
|
|
otsu = sitk.OtsuThresholdImageFilter() |
|
372
|
|
|
otsu.Execute(borders_image) |
|
373
|
|
|
threshold = otsu.GetThreshold() |
|
374
|
|
|
values = borders_flat[borders_flat < threshold] |
|
375
|
|
|
if values.any(): |
|
376
|
|
|
default_value = values.mean() |
|
377
|
|
|
else: |
|
378
|
|
|
default_value = borders_flat.mean() |
|
379
|
|
|
return default_value |
|
380
|
|
|
|
|
381
|
|
|
def _parse_scales_isotropic(scales, isotropic): |
|
382
|
|
|
scales = to_tuple(scales) |
|
383
|
|
|
if isotropic and len(scales) in (3, 6): |
|
384
|
|
|
message = ( |
|
385
|
|
|
'If "isotropic" is True, the value for "scales" must have' |
|
386
|
|
|
f' length 1 or 2, but "{scales}" was passed' |
|
387
|
|
|
) |
|
388
|
|
|
raise ValueError(message) |
|
389
|
|
|
|
|
390
|
|
|
def _parse_default_value(value: Union[str, float]) -> Union[str, float]: |
|
391
|
|
|
if isinstance(value, Number) or value in ('minimum', 'otsu', 'mean'): |
|
392
|
|
|
return value |
|
393
|
|
|
message = ( |
|
394
|
|
|
'Value for default_pad_value must be "minimum", "otsu", "mean"' |
|
395
|
|
|
' or a number' |
|
396
|
|
|
) |
|
397
|
|
|
raise ValueError(message) |
|
398
|
|
|
|