| Total Complexity | 3 |
| Total Lines | 33 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import SimpleITK as sitk |
||
| 2 | |||
| 3 | from .label_transform import LabelTransform |
||
| 4 | |||
| 5 | |||
| 6 | class KeepLargestComponent(LabelTransform): |
||
| 7 | r"""Keep only the largest connected component in a binary label map. |
||
| 8 | |||
| 9 | Args: |
||
| 10 | **kwargs: See :class:`~torchio.transforms.Transform` for additional |
||
| 11 | keyword arguments. |
||
| 12 | |||
| 13 | .. note:: For now, this transform only works for binary images, i.e., label |
||
| 14 | maps with a background and a foreground class. If you are interested in |
||
| 15 | extending this transform `open a new issue`_. |
||
| 16 | |||
| 17 | .. _open a new issue: https://github.com/fepegar/torchio/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=Improve%20KeepLargestComponent%20transform |
||
| 18 | """ # noqa: E501 |
||
| 19 | def __init__(self, **kwargs): |
||
| 20 | super().__init__(**kwargs) |
||
| 21 | self.args_names = [] |
||
| 22 | |||
| 23 | def apply_transform(self, subject): |
||
| 24 | for image in self.get_images(subject): |
||
| 25 | assert image.data.ndim == 4 and image.data.shape[0] == 1 |
||
| 26 | sitk_image = image.as_sitk() |
||
| 27 | connected_components = sitk.ConnectedComponent(sitk_image) |
||
| 28 | labeled_cc = sitk.RelabelComponent(connected_components) |
||
| 29 | largest_cc = labeled_cc == 1 |
||
| 30 | tensor, _ = self.sitk_to_nib(largest_cc) |
||
| 31 | image.set_data(tensor) |
||
| 32 | return subject |
||
| 33 |