|
1
|
|
|
from torchio import RandomBlur |
|
2
|
|
|
from ...utils import TorchioTestCase |
|
3
|
|
|
|
|
4
|
|
|
|
|
5
|
|
|
class TestRandomBlur(TorchioTestCase): |
|
6
|
|
|
"""Tests for `RandomBlur`.""" |
|
7
|
|
|
def test_no_blurring(self): |
|
8
|
|
|
transform = RandomBlur(std=0) |
|
9
|
|
|
transformed = transform(self.sample_subject) |
|
10
|
|
|
self.assertTensorAlmostEqual(self.sample_subject.t1.data, transformed.t1.data) |
|
11
|
|
|
|
|
12
|
|
|
def test_with_blurring(self): |
|
13
|
|
|
transform = RandomBlur(std=(1, 3)) |
|
14
|
|
|
transformed = transform(self.sample_subject) |
|
15
|
|
|
self.assertTensorNotEqual(self.sample_subject.t1.data, transformed.t1.data) |
|
16
|
|
|
|
|
17
|
|
|
def test_negative_std(self): |
|
18
|
|
|
with self.assertRaises(ValueError): |
|
19
|
|
|
RandomBlur(std=-2) |
|
20
|
|
|
|
|
21
|
|
|
def test_std_range_with_negative_min(self): |
|
22
|
|
|
with self.assertRaises(ValueError): |
|
23
|
|
|
RandomBlur(std=(-0.5, 4)) |
|
24
|
|
|
|
|
25
|
|
|
def test_wrong_std_type(self): |
|
26
|
|
|
with self.assertRaises(ValueError): |
|
27
|
|
|
RandomBlur(std='wrong') |
|
28
|
|
|
|
|
29
|
|
|
def test_parse_stds(self): |
|
30
|
|
|
def do_assert(transform): |
|
31
|
|
|
self.assertEqual(transform.std_ranges, 3 * (0, 1)) |
|
32
|
|
|
do_assert(RandomBlur(std=1)) |
|
33
|
|
|
do_assert(RandomBlur(std=(0, 1))) |
|
34
|
|
|
do_assert(RandomBlur(std=3 * (1,))) |
|
35
|
|
|
do_assert(RandomBlur(std=3 * [0, 1])) |
|
36
|
|
|
|