|
1
|
|
|
import random |
|
2
|
|
|
import warnings |
|
3
|
|
|
from itertools import islice |
|
4
|
|
|
from typing import List, Iterator |
|
5
|
|
|
|
|
6
|
|
|
from tqdm import trange |
|
7
|
|
|
from torch.utils.data import Dataset, DataLoader |
|
8
|
|
|
|
|
9
|
|
|
from .sampler import PatchSampler |
|
10
|
|
|
from .dataset import SubjectsDataset |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
class Queue(Dataset): |
|
14
|
|
|
r"""Patches queue used for patch-based training. |
|
15
|
|
|
|
|
16
|
|
|
Args: |
|
17
|
|
|
subjects_dataset: Instance of |
|
18
|
|
|
:class:`~torchio.data.dataset.SubjectsDataset`. |
|
19
|
|
|
max_length: Maximum number of patches that can be stored in the queue. |
|
20
|
|
|
Using a large number means that the queue needs to be filled less |
|
21
|
|
|
often, but more CPU memory is needed to store the patches. |
|
22
|
|
|
samples_per_volume: Number of patches to extract from each volume. |
|
23
|
|
|
A small number of patches ensures a large variability in the queue, |
|
24
|
|
|
but training will be slower. |
|
25
|
|
|
sampler: A sampler used to extract patches from the volumes. |
|
26
|
|
|
num_workers: Number of subprocesses to use for data loading |
|
27
|
|
|
(as in :class:`torch.utils.data.DataLoader`). |
|
28
|
|
|
``0`` means that the data will be loaded in the main process. |
|
29
|
|
|
shuffle_subjects: If ``True``, the subjects dataset is shuffled at the |
|
30
|
|
|
beginning of each epoch, i.e. when all patches from all subjects |
|
31
|
|
|
have been processed. |
|
32
|
|
|
shuffle_patches: If ``True``, patches are shuffled after filling the |
|
33
|
|
|
queue. |
|
34
|
|
|
verbose: If ``True``, some debugging messages are printed. |
|
35
|
|
|
|
|
36
|
|
|
This sketch can be used to experiment and understand how the queue works. |
|
37
|
|
|
In this case, :attr:`shuffle_subjects` is ``False`` |
|
38
|
|
|
and :attr:`shuffle_patches` is ``True``. |
|
39
|
|
|
|
|
40
|
|
|
.. raw:: html |
|
41
|
|
|
|
|
42
|
|
|
<embed> |
|
43
|
|
|
<iframe style="width: 640px; height: 360px; overflow: hidden;" scrolling="no" frameborder="0" src="https://editor.p5js.org/embed/DZwjZzkkV"></iframe> |
|
44
|
|
|
</embed> |
|
45
|
|
|
|
|
46
|
|
|
.. note:: :attr:`num_workers` refers to the number of workers used to |
|
47
|
|
|
load and transform the volumes. Multiprocessing is not needed to pop |
|
48
|
|
|
patches from the queue. |
|
49
|
|
|
|
|
50
|
|
|
Example: |
|
51
|
|
|
|
|
52
|
|
|
>>> from torch.utils.data import DataLoader |
|
53
|
|
|
>>> import torchio |
|
54
|
|
|
>>> patch_size = 96 |
|
55
|
|
|
>>> queue_length = 300 |
|
56
|
|
|
>>> samples_per_volume = 10 |
|
57
|
|
|
>>> sampler = torchio.data.UniformSampler(patch_size) |
|
58
|
|
|
>>> patches_queue = torchio.Queue( |
|
59
|
|
|
... subjects_dataset, # instance of torchio.SubjectsDataset |
|
60
|
|
|
... queue_length, |
|
61
|
|
|
... samples_per_volume, |
|
62
|
|
|
... sampler, |
|
63
|
|
|
... num_workers=4, |
|
64
|
|
|
... shuffle_subjects=True, |
|
65
|
|
|
... shuffle_patches=True, |
|
66
|
|
|
... ) |
|
67
|
|
|
>>> patches_loader = DataLoader(patches_queue, batch_size=16) |
|
68
|
|
|
>>> num_epochs = 20 |
|
69
|
|
|
>>> for epoch_index in range(num_epochs): |
|
70
|
|
|
... for patches_batch in patches_loader: |
|
71
|
|
|
... inputs = patches_batch['image_name'][torchio.DATA] |
|
72
|
|
|
... targets = patches_batch['targets_name'][torchio.DATA] |
|
73
|
|
|
... logits = model(inputs) # model being an instance of torch.nn.Module |
|
74
|
|
|
|
|
75
|
|
|
""" |
|
76
|
|
|
def __init__( |
|
77
|
|
|
self, |
|
78
|
|
|
subjects_dataset: SubjectsDataset, |
|
79
|
|
|
max_length: int, |
|
80
|
|
|
samples_per_volume: int, |
|
81
|
|
|
sampler: PatchSampler, |
|
82
|
|
|
num_workers: int = 0, |
|
83
|
|
|
shuffle_subjects: bool = True, |
|
84
|
|
|
shuffle_patches: bool = True, |
|
85
|
|
|
verbose: bool = False, |
|
86
|
|
|
): |
|
87
|
|
|
self.subjects_dataset = subjects_dataset |
|
88
|
|
|
self.max_length = max_length |
|
89
|
|
|
self.shuffle_subjects = shuffle_subjects |
|
90
|
|
|
self.shuffle_patches = shuffle_patches |
|
91
|
|
|
self.samples_per_volume = samples_per_volume |
|
92
|
|
|
self.sampler = sampler |
|
93
|
|
|
self.num_workers = num_workers |
|
94
|
|
|
self.verbose = verbose |
|
95
|
|
|
self.subjects_iterable = self.get_subjects_iterable() |
|
96
|
|
|
self.patches_list: List[dict] = [] |
|
97
|
|
|
self.num_sampled_patches = 0 |
|
98
|
|
|
|
|
99
|
|
|
def __len__(self): |
|
100
|
|
|
return self.iterations_per_epoch |
|
101
|
|
|
|
|
102
|
|
|
def __getitem__(self, _): |
|
103
|
|
|
# There are probably more elegant ways of doing this |
|
104
|
|
|
if not self.patches_list: |
|
105
|
|
|
self._print('Patches list is empty.') |
|
106
|
|
|
self.fill() |
|
107
|
|
|
sample_patch = self.patches_list.pop() |
|
108
|
|
|
self.num_sampled_patches += 1 |
|
109
|
|
|
return sample_patch |
|
110
|
|
|
|
|
111
|
|
|
def __repr__(self): |
|
112
|
|
|
attributes = [ |
|
113
|
|
|
f'max_length={self.max_length}', |
|
114
|
|
|
f'num_subjects={self.num_subjects}', |
|
115
|
|
|
f'num_patches={self.num_patches}', |
|
116
|
|
|
f'samples_per_volume={self.samples_per_volume}', |
|
117
|
|
|
f'num_sampled_patches={self.num_sampled_patches}', |
|
118
|
|
|
f'iterations_per_epoch={self.iterations_per_epoch}', |
|
119
|
|
|
] |
|
120
|
|
|
attributes_string = ', '.join(attributes) |
|
121
|
|
|
return f'Queue({attributes_string})' |
|
122
|
|
|
|
|
123
|
|
|
def _print(self, *args): |
|
124
|
|
|
if self.verbose: |
|
125
|
|
|
print(*args) # noqa: T001 |
|
126
|
|
|
|
|
127
|
|
|
@property |
|
128
|
|
|
def num_subjects(self) -> int: |
|
129
|
|
|
return len(self.subjects_dataset) |
|
130
|
|
|
|
|
131
|
|
|
@property |
|
132
|
|
|
def num_patches(self) -> int: |
|
133
|
|
|
return len(self.patches_list) |
|
134
|
|
|
|
|
135
|
|
|
@property |
|
136
|
|
|
def iterations_per_epoch(self) -> int: |
|
137
|
|
|
return self.num_subjects * self.samples_per_volume |
|
138
|
|
|
|
|
139
|
|
|
def fill(self) -> None: |
|
140
|
|
|
assert self.sampler is not None |
|
141
|
|
|
if self.max_length % self.samples_per_volume != 0: |
|
142
|
|
|
message = ( |
|
143
|
|
|
f'Queue length ({self.max_length})' |
|
144
|
|
|
' not divisible by the number of' |
|
145
|
|
|
f' patches per volume ({self.samples_per_volume})' |
|
146
|
|
|
) |
|
147
|
|
|
warnings.warn(message) |
|
148
|
|
|
|
|
149
|
|
|
# If there are e.g. 4 subjects and 1 sample per volume and max_length |
|
150
|
|
|
# is 6, we just need to load 4 subjects, not 6 |
|
151
|
|
|
max_num_subjects_for_queue = self.max_length // self.samples_per_volume |
|
152
|
|
|
num_subjects_for_queue = min( |
|
153
|
|
|
self.num_subjects, max_num_subjects_for_queue) |
|
154
|
|
|
|
|
155
|
|
|
self._print(f'Filling queue from {num_subjects_for_queue} subjects...') |
|
156
|
|
|
if self.verbose: |
|
157
|
|
|
iterable = trange(num_subjects_for_queue, leave=False) |
|
158
|
|
|
else: |
|
159
|
|
|
iterable = range(num_subjects_for_queue) |
|
160
|
|
|
for _ in iterable: |
|
161
|
|
|
subject_sample = self.get_next_subject_sample() |
|
162
|
|
|
iterable = self.sampler(subject_sample) |
|
163
|
|
|
patches = list(islice(iterable, self.samples_per_volume)) |
|
164
|
|
|
self.patches_list.extend(patches) |
|
165
|
|
|
if self.shuffle_patches: |
|
166
|
|
|
random.shuffle(self.patches_list) |
|
167
|
|
|
|
|
168
|
|
|
def get_next_subject_sample(self) -> dict: |
|
169
|
|
|
# A StopIteration exception is expected when the queue is empty |
|
170
|
|
|
try: |
|
171
|
|
|
subject_sample = next(self.subjects_iterable) |
|
172
|
|
|
except StopIteration as exception: |
|
173
|
|
|
self._print('Queue is empty:', exception) |
|
174
|
|
|
self.subjects_iterable = self.get_subjects_iterable() |
|
175
|
|
|
subject_sample = next(self.subjects_iterable) |
|
176
|
|
|
return subject_sample |
|
177
|
|
|
|
|
178
|
|
|
def get_subjects_iterable(self) -> Iterator: |
|
179
|
|
|
# I need a DataLoader to handle parallelism |
|
180
|
|
|
# But this loader is always expected to yield single subject samples |
|
181
|
|
|
self._print( |
|
182
|
|
|
'\nCreating subjects loader with', self.num_workers, 'workers') |
|
183
|
|
|
subjects_loader = DataLoader( |
|
184
|
|
|
self.subjects_dataset, |
|
185
|
|
|
num_workers=self.num_workers, |
|
186
|
|
|
collate_fn=lambda x: x[0], |
|
187
|
|
|
shuffle=self.shuffle_subjects, |
|
188
|
|
|
) |
|
189
|
|
|
return iter(subjects_loader) |
|
190
|
|
|
|