| Conditions | 7 |
| Total Lines | 59 |
| Code Lines | 49 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | import ast |
||
| 51 | def create_dummy_dataset( |
||
| 52 | num_images: int, |
||
| 53 | size_range: Tuple[int, int], |
||
| 54 | directory: Optional[TypePath] = None, |
||
| 55 | suffix: str = '.nii.gz', |
||
| 56 | force: bool = False, |
||
| 57 | verbose: bool = False, |
||
| 58 | ): |
||
| 59 | from .data import ScalarImage, LabelMap, Subject |
||
| 60 | output_dir = tempfile.gettempdir() if directory is None else directory |
||
| 61 | output_dir = Path(output_dir) |
||
| 62 | images_dir = output_dir / 'dummy_images' |
||
| 63 | labels_dir = output_dir / 'dummy_labels' |
||
| 64 | |||
| 65 | if force: |
||
| 66 | shutil.rmtree(images_dir) |
||
| 67 | shutil.rmtree(labels_dir) |
||
| 68 | |||
| 69 | subjects: List[Subject] = [] |
||
| 70 | if images_dir.is_dir(): |
||
| 71 | for i in trange(num_images): |
||
| 72 | image_path = images_dir / f'image_{i}{suffix}' |
||
| 73 | label_path = labels_dir / f'label_{i}{suffix}' |
||
| 74 | subject = Subject( |
||
| 75 | one_modality=ScalarImage(image_path), |
||
| 76 | segmentation=LabelMap(label_path), |
||
| 77 | ) |
||
| 78 | subjects.append(subject) |
||
| 79 | else: |
||
| 80 | images_dir.mkdir(exist_ok=True, parents=True) |
||
| 81 | labels_dir.mkdir(exist_ok=True, parents=True) |
||
| 82 | if verbose: |
||
| 83 | print('Creating dummy dataset...') # noqa: T001 |
||
| 84 | iterable = trange(num_images) |
||
| 85 | else: |
||
| 86 | iterable = range(num_images) |
||
| 87 | for i in iterable: |
||
| 88 | shape = np.random.randint(*size_range, size=3) |
||
| 89 | affine = np.eye(4) |
||
| 90 | image = np.random.rand(*shape) |
||
| 91 | label = np.ones_like(image) |
||
| 92 | label[image < 0.33] = 0 |
||
| 93 | label[image > 0.66] = 2 |
||
| 94 | image *= 255 |
||
| 95 | |||
| 96 | image_path = images_dir / f'image_{i}{suffix}' |
||
| 97 | nii = nib.Nifti1Image(image.astype(np.uint8), affine) |
||
| 98 | nii.to_filename(str(image_path)) |
||
| 99 | |||
| 100 | label_path = labels_dir / f'label_{i}{suffix}' |
||
| 101 | nii = nib.Nifti1Image(label.astype(np.uint8), affine) |
||
| 102 | nii.to_filename(str(label_path)) |
||
| 103 | |||
| 104 | subject = Subject( |
||
| 105 | one_modality=ScalarImage(image_path), |
||
| 106 | segmentation=LabelMap(label_path), |
||
| 107 | ) |
||
| 108 | subjects.append(subject) |
||
| 109 | return subjects |
||
| 110 | |||
| 197 |