|
1
|
|
|
from pathlib import Path |
|
2
|
|
|
from numbers import Number |
|
3
|
|
|
from typing import Union, Tuple, Optional, Sequence |
|
4
|
|
|
|
|
5
|
|
|
import torch |
|
6
|
|
|
import numpy as np |
|
7
|
|
|
import SimpleITK as sitk |
|
8
|
|
|
|
|
9
|
|
|
from ....data.io import sitk_to_nib, get_sitk_metadata_from_ras_affine |
|
10
|
|
|
from ....data.subject import Subject |
|
11
|
|
|
from ....typing import TypeTripletFloat, TypePath |
|
12
|
|
|
from ....data.image import Image, ScalarImage |
|
13
|
|
|
from ... import SpatialTransform |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
|
TypeSpacing = Union[float, Tuple[float, float, float]] |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class Resample(SpatialTransform): |
|
20
|
|
|
"""Change voxel spacing by resampling. |
|
21
|
|
|
|
|
22
|
|
|
Args: |
|
23
|
|
|
target: Argument to define the output space. Can be one of: |
|
24
|
|
|
|
|
25
|
|
|
- Output spacing :math:`(s_w, s_h, s_d)`, in mm. If only one value |
|
26
|
|
|
:math:`s` is specified, then :math:`s_w = s_h = s_d = s`. |
|
27
|
|
|
|
|
28
|
|
|
- Path to an image that will be used as reference. |
|
29
|
|
|
|
|
30
|
|
|
- Instance of :class:`~torchio.Image`. |
|
31
|
|
|
|
|
32
|
|
|
- Name of an image key in the subject. |
|
33
|
|
|
|
|
34
|
|
|
- Tuple ``(spaial_shape, affine)`` defining the output space. |
|
35
|
|
|
|
|
36
|
|
|
pre_affine_name: Name of the *image key* (not subject key) storing an |
|
37
|
|
|
affine matrix that will be applied to the image header before |
|
38
|
|
|
resampling. If ``None``, the image is resampled with an identity |
|
39
|
|
|
transform. See usage in the example below. |
|
40
|
|
|
image_interpolation: See :ref:`Interpolation`. |
|
41
|
|
|
scalars_only: Apply only to instances of :class:`~torchio.ScalarImage`. |
|
42
|
|
|
Used internally by :class:`~torchio.transforms.RandomAnisotropy`. |
|
43
|
|
|
**kwargs: See :class:`~torchio.transforms.Transform` for additional |
|
44
|
|
|
keyword arguments. |
|
45
|
|
|
|
|
46
|
|
|
Example: |
|
47
|
|
|
>>> import torch |
|
48
|
|
|
>>> import torchio as tio |
|
49
|
|
|
>>> transform = tio.Resample(1) # resample all images to 1mm iso |
|
50
|
|
|
>>> transform = tio.Resample((2, 2, 2)) # resample all images to 2mm iso |
|
51
|
|
|
>>> transform = tio.Resample('t1') # resample all images to 't1' image space |
|
52
|
|
|
>>> # Example: using a precomputed transform to MNI space |
|
53
|
|
|
>>> ref_path = tio.datasets.Colin27().t1.path # this image is in the MNI space, so we can use it as reference/target |
|
54
|
|
|
>>> affine_matrix = tio.io.read_matrix('transform_to_mni.txt') # from a NiftyReg registration. Would also work with e.g. .tfm from SimpleITK |
|
55
|
|
|
>>> image = tio.ScalarImage(tensor=torch.rand(1, 256, 256, 180), to_mni=affine_matrix) # 'to_mni' is an arbitrary name |
|
56
|
|
|
>>> transform = tio.Resample(colin.t1.path, pre_affine_name='to_mni') # nearest neighbor interpolation is used for label maps |
|
57
|
|
|
>>> transformed = transform(image) # "image" is now in the MNI space |
|
58
|
|
|
|
|
59
|
|
|
.. plot:: |
|
60
|
|
|
|
|
61
|
|
|
import torchio as tio |
|
62
|
|
|
subject = tio.datasets.FPG() |
|
63
|
|
|
subject.remove_image('seg') |
|
64
|
|
|
resample = tio.Resample(8) |
|
65
|
|
|
t1_resampled = resample(subject.t1) |
|
66
|
|
|
subject.add_image(t1_resampled, 'Downsampled') |
|
67
|
|
|
subject.plot() |
|
68
|
|
|
|
|
69
|
|
|
""" # noqa: E501 |
|
70
|
|
|
def __init__( |
|
71
|
|
|
self, |
|
72
|
|
|
target: Union[TypeSpacing, str, Path, Image, None] = 1, |
|
73
|
|
|
image_interpolation: str = 'linear', |
|
74
|
|
|
pre_affine_name: Optional[str] = None, |
|
75
|
|
|
scalars_only: bool = False, |
|
76
|
|
|
**kwargs |
|
77
|
|
|
): |
|
78
|
|
|
super().__init__(**kwargs) |
|
79
|
|
|
self.target = target |
|
80
|
|
|
self.image_interpolation = self.parse_interpolation( |
|
81
|
|
|
image_interpolation) |
|
82
|
|
|
self.pre_affine_name = pre_affine_name |
|
83
|
|
|
self.scalars_only = scalars_only |
|
84
|
|
|
self.args_names = ( |
|
85
|
|
|
'target', |
|
86
|
|
|
'image_interpolation', |
|
87
|
|
|
'pre_affine_name', |
|
88
|
|
|
'scalars_only', |
|
89
|
|
|
) |
|
90
|
|
|
|
|
91
|
|
|
@staticmethod |
|
92
|
|
|
def _parse_spacing(spacing: TypeSpacing) -> Tuple[float, float, float]: |
|
93
|
|
|
if isinstance(spacing, Sequence) and len(spacing) == 3: |
|
94
|
|
|
result = spacing |
|
95
|
|
|
elif isinstance(spacing, Number): |
|
96
|
|
|
result = 3 * (spacing,) |
|
97
|
|
|
else: |
|
98
|
|
|
message = ( |
|
99
|
|
|
'Target must be a string, a positive number' |
|
100
|
|
|
f' or a sequence of positive numbers, not {type(spacing)}' |
|
101
|
|
|
) |
|
102
|
|
|
raise ValueError(message) |
|
103
|
|
|
if np.any(np.array(spacing) <= 0): |
|
104
|
|
|
message = f'Spacing must be strictly positive, not "{spacing}"' |
|
105
|
|
|
raise ValueError(message) |
|
106
|
|
|
return result |
|
107
|
|
|
|
|
108
|
|
|
@staticmethod |
|
109
|
|
|
def check_affine(affine_name: str, image: Image): |
|
110
|
|
|
if not isinstance(affine_name, str): |
|
111
|
|
|
message = ( |
|
112
|
|
|
'Affine name argument must be a string,' |
|
113
|
|
|
f' not {type(affine_name)}' |
|
114
|
|
|
) |
|
115
|
|
|
raise TypeError(message) |
|
116
|
|
|
if affine_name in image: |
|
117
|
|
|
matrix = image[affine_name] |
|
118
|
|
|
if not isinstance(matrix, (np.ndarray, torch.Tensor)): |
|
119
|
|
|
message = ( |
|
120
|
|
|
'The affine matrix must be a NumPy array or PyTorch' |
|
121
|
|
|
f' tensor, not {type(matrix)}' |
|
122
|
|
|
) |
|
123
|
|
|
raise TypeError(message) |
|
124
|
|
|
if matrix.shape != (4, 4): |
|
125
|
|
|
message = ( |
|
126
|
|
|
'The affine matrix shape must be (4, 4),' |
|
127
|
|
|
f' not {matrix.shape}' |
|
128
|
|
|
) |
|
129
|
|
|
raise ValueError(message) |
|
130
|
|
|
|
|
131
|
|
|
@staticmethod |
|
132
|
|
|
def check_affine_key_presence(affine_name: str, subject: Subject): |
|
133
|
|
|
for image in subject.get_images(intensity_only=False): |
|
134
|
|
|
if affine_name in image: |
|
135
|
|
|
return |
|
136
|
|
|
message = ( |
|
137
|
|
|
f'An affine name was given ("{affine_name}"), but it was not found' |
|
138
|
|
|
' in any image in the subject' |
|
139
|
|
|
) |
|
140
|
|
|
raise ValueError(message) |
|
141
|
|
|
|
|
142
|
|
|
def apply_transform(self, subject: Subject) -> Subject: |
|
143
|
|
|
use_pre_affine = self.pre_affine_name is not None |
|
144
|
|
|
if use_pre_affine: |
|
145
|
|
|
self.check_affine_key_presence(self.pre_affine_name, subject) |
|
146
|
|
|
|
|
147
|
|
|
for image in self.get_images(subject): |
|
148
|
|
|
# Do not resample the reference image if it is in the subject |
|
149
|
|
|
if self.target is image: |
|
150
|
|
|
continue |
|
151
|
|
|
try: |
|
152
|
|
|
target_image = subject[self.target] |
|
153
|
|
|
if target_image is image: |
|
154
|
|
|
continue |
|
155
|
|
|
except (KeyError, TypeError): |
|
156
|
|
|
pass |
|
157
|
|
|
|
|
158
|
|
|
# Choose interpolation |
|
159
|
|
|
if not isinstance(image, ScalarImage): |
|
160
|
|
|
if self.scalars_only: |
|
161
|
|
|
continue |
|
162
|
|
|
interpolation = 'nearest' |
|
163
|
|
|
else: |
|
164
|
|
|
interpolation = self.image_interpolation |
|
165
|
|
|
interpolator = self.get_sitk_interpolator(interpolation) |
|
166
|
|
|
|
|
167
|
|
|
# Apply given affine matrix if found in image |
|
168
|
|
|
if use_pre_affine and self.pre_affine_name in image: |
|
169
|
|
|
self.check_affine(self.pre_affine_name, image) |
|
170
|
|
|
matrix = image[self.pre_affine_name] |
|
171
|
|
|
if isinstance(matrix, torch.Tensor): |
|
172
|
|
|
matrix = matrix.numpy() |
|
173
|
|
|
image.affine = matrix @ image.affine |
|
174
|
|
|
|
|
175
|
|
|
floating_sitk = image.as_sitk(force_3d=True) |
|
176
|
|
|
|
|
177
|
|
|
resampler = sitk.ResampleImageFilter() |
|
178
|
|
|
resampler.SetInterpolator(interpolator) |
|
179
|
|
|
self._set_resampler_reference( |
|
180
|
|
|
resampler, |
|
181
|
|
|
self.target, |
|
182
|
|
|
floating_sitk, |
|
183
|
|
|
subject, |
|
184
|
|
|
) |
|
185
|
|
|
resampled = resampler.Execute(floating_sitk) |
|
186
|
|
|
|
|
187
|
|
|
array, affine = sitk_to_nib(resampled) |
|
188
|
|
|
image.set_data(torch.as_tensor(array)) |
|
189
|
|
|
image.affine = affine |
|
190
|
|
|
return subject |
|
191
|
|
|
|
|
192
|
|
|
def _set_resampler_reference( |
|
193
|
|
|
self, |
|
194
|
|
|
resampler: sitk.ResampleImageFilter, |
|
195
|
|
|
target: Union[TypeSpacing, TypePath, Image], |
|
196
|
|
|
floating_sitk, |
|
197
|
|
|
subject, |
|
198
|
|
|
): |
|
199
|
|
|
# Target can be: |
|
200
|
|
|
# 1) An instance of torchio.Image |
|
201
|
|
|
# 2) An instance of pathlib.Path |
|
202
|
|
|
# 3) A string, which could be a path or an image in subject |
|
203
|
|
|
# 3) A string, which could be a path or an image in subject |
|
204
|
|
|
# 4) A number or sequence of numbers for spacing |
|
205
|
|
|
# 5) A tuple of shape, affine |
|
206
|
|
|
# The fourth case is the different one |
|
207
|
|
|
if isinstance(target, (str, Path, Image)): |
|
208
|
|
|
if isinstance(target, Image): |
|
209
|
|
|
# It's a TorchIO image |
|
210
|
|
|
image = target |
|
211
|
|
|
elif Path(target).is_file(): |
|
212
|
|
|
# It's an existing file |
|
213
|
|
|
path = target |
|
214
|
|
|
image = ScalarImage(path) |
|
215
|
|
|
else: # assume it's the name of an image in the subject |
|
216
|
|
|
try: |
|
217
|
|
|
image = subject[target] |
|
218
|
|
|
except KeyError as error: |
|
219
|
|
|
message = ( |
|
220
|
|
|
f'Image name "{target}" not found in subject.' |
|
221
|
|
|
f' If "{target}" is a path, it does not exist or' |
|
222
|
|
|
' permission has been denied' |
|
223
|
|
|
) |
|
224
|
|
|
raise ValueError(message) from error |
|
225
|
|
|
self._set_resampler_from_shape_affine( |
|
226
|
|
|
resampler, |
|
227
|
|
|
image.spatial_shape, |
|
228
|
|
|
image.affine, |
|
229
|
|
|
) |
|
230
|
|
|
elif isinstance(target, Number): # one number for target was passed |
|
231
|
|
|
self._set_resampler_from_spacing(resampler, target, floating_sitk) |
|
232
|
|
|
elif isinstance(target, Sequence) and len(target) == 2: |
|
233
|
|
|
shape, affine = target |
|
234
|
|
|
if not (isinstance(shape, Sequence) and len(shape) == 3): |
|
235
|
|
|
message = ( |
|
236
|
|
|
f'Target shape must be a sequence of three integers, but' |
|
237
|
|
|
f' "{shape}" was passed' |
|
238
|
|
|
) |
|
239
|
|
|
raise RuntimeError(message) |
|
240
|
|
|
if not affine.shape == (4, 4): |
|
241
|
|
|
message = ( |
|
242
|
|
|
f'Target affine must have shape (4, 4) but the following' |
|
243
|
|
|
f' was passed:\n{shape}' |
|
244
|
|
|
) |
|
245
|
|
|
raise RuntimeError(message) |
|
246
|
|
|
self._set_resampler_from_shape_affine( |
|
247
|
|
|
resampler, |
|
248
|
|
|
shape, |
|
249
|
|
|
affine, |
|
250
|
|
|
) |
|
251
|
|
|
elif isinstance(target, Sequence) and len(target) == 3: |
|
252
|
|
|
self._set_resampler_from_spacing(resampler, target, floating_sitk) |
|
253
|
|
|
else: |
|
254
|
|
|
raise RuntimeError(f'Target not understood: "{target}"') |
|
255
|
|
|
|
|
256
|
|
|
def _set_resampler_from_shape_affine(self, resampler, shape, affine): |
|
257
|
|
|
origin, spacing, direction = get_sitk_metadata_from_ras_affine(affine) |
|
258
|
|
|
resampler.SetOutputDirection(direction) |
|
259
|
|
|
resampler.SetOutputOrigin(origin) |
|
260
|
|
|
resampler.SetOutputSpacing(spacing) |
|
261
|
|
|
resampler.SetSize(shape) |
|
262
|
|
|
|
|
263
|
|
|
def _set_resampler_from_spacing(self, resampler, target, floating_sitk): |
|
264
|
|
|
target_spacing = self._parse_spacing(target) |
|
265
|
|
|
reference_image = self.get_reference_image( |
|
266
|
|
|
floating_sitk, |
|
267
|
|
|
target_spacing, |
|
268
|
|
|
) |
|
269
|
|
|
resampler.SetReferenceImage(reference_image) |
|
270
|
|
|
|
|
271
|
|
|
@staticmethod |
|
272
|
|
|
def get_reference_image( |
|
273
|
|
|
floating_sitk: sitk.Image, |
|
274
|
|
|
spacing: TypeTripletFloat, |
|
275
|
|
|
) -> sitk.Image: |
|
276
|
|
|
old_spacing = np.array(floating_sitk.GetSpacing()) |
|
277
|
|
|
new_spacing = np.array(spacing) |
|
278
|
|
|
old_size = np.array(floating_sitk.GetSize()) |
|
279
|
|
|
new_size = old_size * old_spacing / new_spacing |
|
280
|
|
|
new_size = np.ceil(new_size).astype(np.uint16) |
|
281
|
|
|
new_size[old_size == 1] = 1 # keep singleton dimensions |
|
282
|
|
|
new_origin_index = 0.5 * (new_spacing / old_spacing - 1) |
|
283
|
|
|
new_origin_lps = floating_sitk.TransformContinuousIndexToPhysicalPoint( |
|
284
|
|
|
new_origin_index) |
|
285
|
|
|
reference = sitk.Image( |
|
286
|
|
|
new_size.tolist(), |
|
287
|
|
|
floating_sitk.GetPixelID(), |
|
288
|
|
|
floating_sitk.GetNumberOfComponentsPerPixel(), |
|
289
|
|
|
) |
|
290
|
|
|
reference.SetDirection(floating_sitk.GetDirection()) |
|
291
|
|
|
reference.SetSpacing(new_spacing.tolist()) |
|
292
|
|
|
reference.SetOrigin(new_origin_lps) |
|
293
|
|
|
return reference |
|
294
|
|
|
|
|
295
|
|
|
@staticmethod |
|
296
|
|
|
def get_sigma(downsampling_factor, spacing): |
|
297
|
|
|
"""Compute optimal standard deviation for Gaussian kernel. |
|
298
|
|
|
|
|
299
|
|
|
From Cardoso et al., "Scale factor point spread function matching: |
|
300
|
|
|
beyond aliasing in image resampling", MICCAI 2015 |
|
301
|
|
|
""" |
|
302
|
|
|
k = downsampling_factor |
|
303
|
|
|
variance = (k ** 2 - 1 ** 2) * (2 * np.sqrt(2 * np.log(2))) ** (-2) |
|
304
|
|
|
sigma = spacing * np.sqrt(variance) |
|
305
|
|
|
return sigma |
|
306
|
|
|
|