Passed
Pull Request — master (#353)
by Fernando
01:17
created

Compose.apply_transform()   A

Complexity

Conditions 1

Size

Total Lines 2
Code Lines 2

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 2
nop 2
dl 0
loc 2
rs 10
c 0
b 0
f 0
1
from typing import Union, Sequence
2
3
import torch
4
import numpy as np
5
from torchvision.transforms import Compose as PyTorchCompose
6
7
from ...data.subject import Subject
8
from .. import Transform
9
from . import RandomTransform
10
11
12
class Compose(Transform):
13
    """Compose several transforms together.
14
15
    Args:
16
        transforms: Sequence of instances of
17
            :py:class:`~torchio.transforms.transform.Transform`.
18
        p: Probability that this transform will be applied.
19
20
    .. note::
21
        This is a thin wrapper of :py:class:`torchvision.transforms.Compose`.
22
    """
23
    def __init__(self, transforms: Sequence[Transform], p: float = 1):
24
        super().__init__(p=p)
25
        self.transform = PyTorchCompose(transforms)
26
        self.transforms = self.transform.transforms
27
28
    def __len__(self):
29
        return len(self.transforms)
30
31
    def __getitem__(self, index):
32
        return self.transforms[index]
33
34
    def __repr__(self):
35
        return self.transform.__repr__()
36
37
    def apply_transform(self, subject: Subject):
38
        return self.transform(subject)
39
40
    def is_invertible(self):
41
        return all(t.is_invertible() for t in self.transforms)
42
43
    def inverse(self):
44
        transforms = []
45
        for transform in self.transforms:
46
            if transform.is_invertible():
47
                transforms.append(transform.inverse())
48
            else:
49
                message = f'Skipping {transform.name} as it is not invertible'
50
                raise UserWarning(message)
51
        transforms.reverse()
52
        return Compose(transforms)
53
54
55
class OneOf(RandomTransform):
56
    """Apply only one of the given transforms.
57
58
    Args:
59
        transforms: Dictionary with instances of
60
            :py:class:`~torchio.transforms.transform.Transform` as keys and
61
            probabilities as values. Probabilities are normalized so they sum
62
            to one. If a sequence is given, the same probability will be
63
            assigned to each transform.
64
        p: Probability that this transform will be applied.
65
66
    Example:
67
        >>> import torchio as tio
68
        >>> colin = tio.datasets.Colin27()
69
        >>> transforms_dict = {
70
        ...     tio.RandomAffine(): 0.75,
71
        ...     tio.RandomElasticDeformation(): 0.25,
72
        ... }  # Using 3 and 1 as probabilities would have the same effect
73
        >>> transform = torchio.transforms.OneOf(transforms_dict)
74
        >>> transformed = transform(colin)
75
76
    """
77
    def __init__(
78
            self,
79
            transforms: Union[dict, Sequence[Transform]],
80
            p: float = 1,
81
            ):
82
        super().__init__(p=p)
83
        self.transforms_dict = self._get_transforms_dict(transforms)
84
85
    def apply_transform(self, subject: Subject):
86
        weights = torch.Tensor(list(self.transforms_dict.values()))
87
        index = torch.multinomial(weights, 1)
88
        transforms = list(self.transforms_dict.keys())
89
        transform = transforms[index]
90
        transformed = transform(subject)
91
        return transformed
92
93
    def _get_transforms_dict(self, transforms: Union[dict, Sequence]):
94
        if isinstance(transforms, dict):
95
            transforms_dict = dict(transforms)
96
            self._normalize_probabilities(transforms_dict)
97
        else:
98
            try:
99
                p = 1 / len(transforms)
100
            except TypeError as e:
101
                message = (
102
                    'Transforms argument must be a dictionary or a sequence,'
103
                    f' not {type(transforms)}'
104
                )
105
                raise ValueError(message) from e
106
            transforms_dict = {transform: p for transform in transforms}
107
        for transform in transforms_dict:
108
            if not isinstance(transform, Transform):
109
                message = (
110
                    'All keys in transform_dict must be instances of'
111
                    f'torchio.Transform, not "{type(transform)}"'
112
                )
113
                raise ValueError(message)
114
        return transforms_dict
115
116
    @staticmethod
117
    def _normalize_probabilities(transforms_dict: dict):
118
        probabilities = np.array(list(transforms_dict.values()), dtype=float)
119
        if np.any(probabilities < 0):
120
            message = (
121
                'Probabilities must be greater or equal to zero,'
122
                f' not "{probabilities}"'
123
            )
124
            raise ValueError(message)
125
        if np.all(probabilities == 0):
126
            message = (
127
                'At least one probability must be greater than zero,'
128
                f' but they are "{probabilities}"'
129
            )
130
            raise ValueError(message)
131
        for transform, probability in transforms_dict.items():
132
            transforms_dict[transform] = probability / probabilities.sum()
133