Passed
Push — master ( e8c1dc...d14fe8 )
by Fernando
01:15
created

torchio.data.image.Image.save()   A

Complexity

Conditions 1

Size

Total Lines 13
Code Lines 6

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 6
nop 3
dl 0
loc 13
rs 10
c 0
b 0
f 0
1
import warnings
2
from pathlib import Path
3
from typing import Any, Dict, Tuple, Optional, Union, Sequence, List
4
5
import torch
6
import humanize
7
import numpy as np
8
import nibabel as nib
9
import SimpleITK as sitk
10
from deprecated import deprecated
11
12
from ..utils import get_stem
13
from ..typing import TypeData, TypePath, TypeTripletInt, TypeTripletFloat
14
from ..constants import DATA, TYPE, AFFINE, PATH, STEM, INTENSITY, LABEL
15
from .io import (
16
    ensure_4d,
17
    read_image,
18
    write_image,
19
    nib_to_sitk,
20
    check_uint_to_int,
21
    get_rotation_and_spacing_from_affine,
22
)
23
24
25
PROTECTED_KEYS = DATA, AFFINE, TYPE, PATH, STEM
26
TypeBound = Tuple[float, float]
27
TypeBounds = Tuple[TypeBound, TypeBound, TypeBound]
28
29
deprecation_message = (
30
    'Setting the image data with the property setter is deprecated. Use the'
31
    ' set_data() method instead'
32
)
33
34
35
class Image(dict):
36
    r"""TorchIO image.
37
38
    For information about medical image orientation, check out `NiBabel docs`_,
39
    the `3D Slicer wiki`_, `Graham Wideman's website`_, `FSL docs`_ or
40
    `SimpleITK docs`_.
41
42
    Args:
43
        path: Path to a file or sequence of paths to files that can be read by
44
            :mod:`SimpleITK` or :mod:`nibabel`, or to a directory containing
45
            DICOM files. If :attr:`tensor` is given, the data in
46
            :attr:`path` will not be read.
47
            If a sequence of paths is given, data
48
            will be concatenated on the channel dimension so spatial
49
            dimensions must match.
50
        type: Type of image, such as :attr:`torchio.INTENSITY` or
51
            :attr:`torchio.LABEL`. This will be used by the transforms to
52
            decide whether to apply an operation, or which interpolation to use
53
            when resampling. For example, `preprocessing`_ and `augmentation`_
54
            intensity transforms will only be applied to images with type
55
            :attr:`torchio.INTENSITY`. Spatial transforms will be applied to
56
            all types, and nearest neighbor interpolation is always used to
57
            resample images with type :attr:`torchio.LABEL`.
58
            The type :attr:`torchio.SAMPLING_MAP` may be used with instances of
59
            :class:`~torchio.data.sampler.weighted.WeightedSampler`.
60
        tensor: If :attr:`path` is not given, :attr:`tensor` must be a 4D
61
            :class:`torch.Tensor` or NumPy array with dimensions
62
            :math:`(C, W, H, D)`.
63
        affine: If :attr:`path` is not given, :attr:`affine` must be a
64
            :math:`4 \times 4` NumPy array. If ``None``, :attr:`affine` is an
65
            identity matrix.
66
        check_nans: If ``True``, issues a warning if NaNs are found
67
            in the image. If ``False``, images will not be checked for the
68
            presence of NaNs.
69
        **kwargs: Items that will be added to the image dictionary, e.g.
70
            acquisition parameters.
71
72
    TorchIO images are `lazy loaders`_, i.e. the data is only loaded from disk
73
    when needed.
74
75
    Example:
76
        >>> import torchio as tio
77
        >>> image = tio.ScalarImage('t1.nii.gz')  # subclass of Image
78
        >>> image  # not loaded yet
79
        ScalarImage(path: t1.nii.gz; type: intensity)
80
        >>> times_two = 2 * image.data  # data is loaded and cached here
81
        >>> image
82
        ScalarImage(shape: (1, 256, 256, 176); spacing: (1.00, 1.00, 1.00); orientation: PIR+; memory: 44.0 MiB; type: intensity)
83
        >>> image.save('doubled_image.nii.gz')
84
85
    .. _lazy loaders: https://en.wikipedia.org/wiki/Lazy_loading
86
    .. _preprocessing: https://torchio.readthedocs.io/transforms/preprocessing.html#intensity
87
    .. _augmentation: https://torchio.readthedocs.io/transforms/augmentation.html#intensity
88
    .. _NiBabel docs: https://nipy.org/nibabel/image_orientation.html
89
    .. _3D Slicer wiki: https://www.slicer.org/wiki/Coordinate_systems
90
    .. _FSL docs: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
91
    .. _SimpleITK docs: https://simpleitk.readthedocs.io/en/master/fundamentalConcepts.html
92
    .. _Graham Wideman's website: http://www.grahamwideman.com/gw/brain/orientation/orientterms.htm
93
    """
94
    def __init__(
95
            self,
96
            path: Union[TypePath, Sequence[TypePath], None] = None,
97
            type: str = None,
98
            tensor: Optional[TypeData] = None,
99
            affine: Optional[TypeData] = None,
100
            check_nans: bool = False,  # removed by ITK by default
101
            channels_last: bool = False,
102
            **kwargs: Dict[str, Any],
103
            ):
104
        self.check_nans = check_nans
105
        self.channels_last = channels_last
106
107
        if type is None:
108
            warnings.warn(
109
                'Not specifying the image type is deprecated and will be'
110
                ' mandatory in the future. You can probably use tio.ScalarImage'
111
                ' or tio.LabelMap instead', DeprecationWarning,
112
            )
113
            type = INTENSITY
114
115
        if path is None and tensor is None:
116
            raise ValueError('A value for path or tensor must be given')
117
        self._loaded = False
118
119
        tensor = self._parse_tensor(tensor)
120
        affine = self._parse_affine(affine)
121
        if tensor is not None:
122
            self.set_data(tensor)
123
            self.affine = affine
124
            self._loaded = True
125
        for key in PROTECTED_KEYS:
126
            if key in kwargs:
127
                message = f'Key "{key}" is reserved. Use a different one'
128
                raise ValueError(message)
129
130
        super().__init__(**kwargs)
131
        self.path = self._parse_path(path)
132
133
        self[PATH] = '' if self.path is None else str(self.path)
134
        self[STEM] = '' if self.path is None else get_stem(self.path)
135
        self[TYPE] = type
136
137
    def __repr__(self):
138
        properties = []
139
        if self._loaded:
140
            properties.extend([
141
                f'shape: {self.shape}',
142
                f'spacing: {self.get_spacing_string()}',
143
                f'orientation: {"".join(self.orientation)}+',
144
                f'memory: {humanize.naturalsize(self.memory, binary=True)}',
145
            ])
146
        else:
147
            properties.append(f'path: "{self.path}"')
148
        if self._loaded:
149
            properties.append(f'dtype: {self.data.type()}')
150
        properties = '; '.join(properties)
151
        string = f'{self.__class__.__name__}({properties})'
152
        return string
153
154
    def __getitem__(self, item):
155
        if item in (DATA, AFFINE):
156
            if item not in self:
157
                self.load()
158
        return super().__getitem__(item)
159
160
    def __array__(self):
161
        return self.data.numpy()
162
163
    def __copy__(self):
164
        kwargs = dict(
165
            tensor=self.data,
166
            affine=self.affine,
167
            type=self.type,
168
            path=self.path,
169
        )
170
        for key, value in self.items():
171
            if key in PROTECTED_KEYS: continue
172
            kwargs[key] = value  # should I copy? deepcopy?
173
        return self.__class__(**kwargs)
174
175
    @property
176
    def data(self) -> torch.Tensor:
177
        """Tensor data. Same as :class:`Image.tensor`."""
178
        return self[DATA]
179
180
    @data.setter
181
    @deprecated(version='0.18.16', reason=deprecation_message)
182
    def data(self, tensor: TypeData):
183
        self.set_data(tensor)
184
185
    def set_data(self, tensor: TypeData):
186
        """Store a 4D tensor in the :attr:`data` key and attribute.
187
188
        Args:
189
            tensor: 4D tensor with dimensions :math:`(C, W, H, D)`.
190
        """
191
        self[DATA] = self._parse_tensor(tensor, none_ok=False)
192
193
    @property
194
    def tensor(self) -> torch.Tensor:
195
        """Tensor data. Same as :class:`Image.data`."""
196
        return self.data
197
198
    @property
199
    def affine(self) -> np.ndarray:
200
        """Affine matrix to transform voxel indices into world coordinates."""
201
        return self[AFFINE]
202
203
    @affine.setter
204
    def affine(self, matrix):
205
        self[AFFINE] = self._parse_affine(matrix)
206
207
    @property
208
    def type(self) -> str:
209
        return self[TYPE]
210
211
    @property
212
    def shape(self) -> Tuple[int, int, int, int]:
213
        """Tensor shape as :math:`(C, W, H, D)`."""
214
        return tuple(self.data.shape)
215
216
    @property
217
    def spatial_shape(self) -> TypeTripletInt:
218
        """Tensor spatial shape as :math:`(W, H, D)`."""
219
        return self.shape[1:]
220
221
    def check_is_2d(self) -> None:
222
        if not self.is_2d():
223
            message = f'Image is not 2D. Spatial shape: {self.spatial_shape}'
224
            raise RuntimeError(message)
225
226
    @property
227
    def height(self) -> int:
228
        """Image height, if 2D."""
229
        self.check_is_2d()
230
        return self.spatial_shape[1]
231
232
    @property
233
    def width(self) -> int:
234
        """Image width, if 2D."""
235
        self.check_is_2d()
236
        return self.spatial_shape[0]
237
238
    @property
239
    def orientation(self) -> Tuple[str, str, str]:
240
        """Orientation codes."""
241
        return nib.aff2axcodes(self.affine)
242
243
    @property
244
    def spacing(self) -> Tuple[float, float, float]:
245
        """Voxel spacing in mm."""
246
        _, spacing = get_rotation_and_spacing_from_affine(self.affine)
247
        return tuple(spacing)
248
249
    @property
250
    def itemsize(self):
251
        """Element size of the data type."""
252
        return self.data.element_size()
253
254
    @property
255
    def memory(self) -> float:
256
        """Number of Bytes that the tensor takes in the RAM."""
257
        return np.prod(self.shape) * self.itemsize
258
259
    @property
260
    def bounds(self) -> np.ndarray:
261
        """Position of centers of voxels in smallest and largest coordinates."""
262
        ini = 0, 0, 0
263
        fin = np.array(self.spatial_shape) - 1
264
        point_ini = nib.affines.apply_affine(self.affine, ini)
265
        point_fin = nib.affines.apply_affine(self.affine, fin)
266
        return np.array((point_ini, point_fin))
267
268
    def axis_name_to_index(self, axis: str) -> int:
269
        """Convert an axis name to an axis index.
270
271
        Args:
272
            axis: Possible inputs are ``'Left'``, ``'Right'``, ``'Anterior'``,
273
                ``'Posterior'``, ``'Inferior'``, ``'Superior'``. Lower-case
274
                versions and first letters are also valid, as only the first
275
                letter will be used.
276
277
        .. note:: If you are working with animals, you should probably use
278
            ``'Superior'``, ``'Inferior'``, ``'Anterior'`` and ``'Posterior'``
279
            for ``'Dorsal'``, ``'Ventral'``, ``'Rostral'`` and ``'Caudal'``,
280
            respectively.
281
282
        .. note:: If your images are 2D, you can use ``'Top'``, ``'Bottom'``,
283
            ``'Left'`` and ``'Right'``.
284
        """
285
        # Top and bottom are used for the vertical 2D axis as the use of
286
        # Height vs Horizontal might be ambiguous
287
288
        if not isinstance(axis, str):
289
            raise ValueError('Axis must be a string')
290
        axis = axis[0].upper()
291
292
        # Generally, TorchIO tensors are (C, W, H, D)
293
        if axis in 'TB':  # Top, Bottom
294
            return -2
295
        else:
296
            try:
297
                index = self.orientation.index(axis)
298
            except ValueError:
299
                index = self.orientation.index(self.flip_axis(axis))
300
            # Return negative indices so that it does not matter whether we
301
            # refer to spatial dimensions or not
302
            index = -3 + index
303
            return index
304
305
    # flake8: noqa: E701
306
    @staticmethod
307
    def flip_axis(axis: str) -> str:
308
        if axis == 'R': flipped_axis = 'L'
309
        elif axis == 'L': flipped_axis = 'R'
310
        elif axis == 'A': flipped_axis = 'P'
311
        elif axis == 'P': flipped_axis = 'A'
312
        elif axis == 'I': flipped_axis = 'S'
313
        elif axis == 'S': flipped_axis = 'I'
314
        elif axis == 'T': flipped_axis = 'B'
315
        elif axis == 'B': flipped_axis = 'T'
316
        else:
317
            values = ', '.join('LRPAISTB')
318
            message = f'Axis not understood. Please use one of: {values}'
319
            raise ValueError(message)
320
        return flipped_axis
321
322
    def get_spacing_string(self) -> str:
323
        strings = [f'{n:.2f}' for n in self.spacing]
324
        string = f'({", ".join(strings)})'
325
        return string
326
327
    def get_bounds(self) -> TypeBounds:
328
        """Get minimum and maximum world coordinates occupied by the image."""
329
        first_index = 3 * (-0.5,)
330
        last_index = np.array(self.spatial_shape) - 0.5
331
        first_point = nib.affines.apply_affine(self.affine, first_index)
332
        last_point = nib.affines.apply_affine(self.affine, last_index)
333
        array = np.array((first_point, last_point))
334
        bounds_x, bounds_y, bounds_z = array.T.tolist()
335
        return bounds_x, bounds_y, bounds_z
336
337
    @staticmethod
338
    def _parse_single_path(
339
            path: TypePath
340
            ) -> Path:
341
        try:
342
            path = Path(path).expanduser()
343
        except TypeError:
344
            message = (
345
                f'Expected type str or Path but found {path} with type'
346
                f' {type(path)} instead'
347
            )
348
            raise TypeError(message)
349
        except RuntimeError:
350
            message = (
351
                f'Conversion to path not possible for variable: {path}'
352
            )
353
            raise RuntimeError(message)
354
355
        if not (path.is_file() or path.is_dir()):   # might be a dir with DICOM
356
            raise FileNotFoundError(f'File not found: "{path}"')
357
        return path
358
359
    def _parse_path(
360
            self,
361
            path: Union[TypePath, Sequence[TypePath]]
362
            ) -> Optional[Union[Path, List[Path]]]:
363
        if path is None:
364
            return None
365
        if isinstance(path, (str, Path)):
366
            return self._parse_single_path(path)
367
        else:
368
            return [self._parse_single_path(p) for p in path]
369
370
    def _parse_tensor(
371
            self,
372
            tensor: TypeData,
373
            none_ok: bool = True,
374
            ) -> torch.Tensor:
375
        if tensor is None:
376
            if none_ok:
377
                return None
378
            else:
379
                raise RuntimeError('Input tensor cannot be None')
380
        if isinstance(tensor, np.ndarray):
381
            tensor = check_uint_to_int(tensor)
382
            tensor = torch.from_numpy(tensor)
383
        elif not isinstance(tensor, torch.Tensor):
384
            message = 'Input tensor must be a PyTorch tensor or NumPy array'
385
            raise TypeError(message)
386
        if tensor.ndim != 4:
387
            raise ValueError('Input tensor must be 4D')
388
        if tensor.dtype == torch.bool:
389
            tensor = tensor.to(torch.uint8)
390
        if self.check_nans and torch.isnan(tensor).any():
391
            warnings.warn(f'NaNs found in tensor', RuntimeWarning)
392
        return tensor
393
394
    def parse_tensor_shape(self, tensor: torch.Tensor) -> torch.Tensor:
395
        return ensure_4d(tensor)
396
397
    @staticmethod
398
    def _parse_affine(affine: TypeData) -> np.ndarray:
399
        if affine is None:
400
            return np.eye(4)
401
        if isinstance(affine, torch.Tensor):
402
            affine = affine.numpy()
403
        if not isinstance(affine, np.ndarray):
404
            raise TypeError(f'Affine must be a NumPy array, not {type(affine)}')
405
        if affine.shape != (4, 4):
406
            raise ValueError(f'Affine shape must be (4, 4), not {affine.shape}')
407
        return affine
408
409
    def load(self) -> None:
410
        r"""Load the image from disk.
411
412
        Returns:
413
            Tuple containing a 4D tensor of size :math:`(C, W, H, D)` and a 2D
414
            :math:`4 \times 4` affine matrix to convert voxel indices to world
415
            coordinates.
416
        """
417
        if self._loaded:
418
            return
419
        paths = self.path if isinstance(self.path, list) else [self.path]
420
        tensor, affine = self.read_and_check(paths[0])
421
        tensors = [tensor]
422
        for path in paths[1:]:
423
            new_tensor, new_affine = self.read_and_check(path)
424
            if not np.array_equal(affine, new_affine):
425
                message = (
426
                    'Files have different affine matrices.'
427
                    f'\nMatrix of {paths[0]}:'
428
                    f'\n{affine}'
429
                    f'\nMatrix of {path}:'
430
                    f'\n{new_affine}'
431
                )
432
                warnings.warn(message, RuntimeWarning)
433
            if not tensor.shape[1:] == new_tensor.shape[1:]:
434
                message = (
435
                    f'Files shape do not match, found {tensor.shape}'
436
                    f'and {new_tensor.shape}'
437
                )
438
                RuntimeError(message)
439
            tensors.append(new_tensor)
440
        tensor = torch.cat(tensors)
441
        self.set_data(tensor)
442
        self.affine = affine
443
        self._loaded = True
444
445
    def read_and_check(self, path: TypePath) -> Tuple[torch.Tensor, np.ndarray]:
446
        tensor, affine = read_image(path)
447
        tensor = self.parse_tensor_shape(tensor)
448
        if self.channels_last:
449
            tensor = tensor.permute(3, 0, 1, 2)
450
        if self.check_nans and torch.isnan(tensor).any():
451
            warnings.warn(f'NaNs found in file "{path}"', RuntimeWarning)
452
        return tensor, affine
453
454
    def save(self, path: TypePath, squeeze: bool = True) -> None:
455
        """Save image to disk.
456
457
        Args:
458
            path: String or instance of :class:`pathlib.Path`.
459
            squeeze: If ``True``, singleton dimensions will be removed
460
                before saving.
461
        """
462
        write_image(
463
            self.data,
464
            self.affine,
465
            path,
466
            squeeze=squeeze,
467
        )
468
469
    def is_2d(self) -> bool:
470
        return self.shape[-1] == 1
471
472
    def numpy(self) -> np.ndarray:
473
        """Get a NumPy array containing the image data."""
474
        return np.asarray(self)
475
476
    def as_sitk(self, **kwargs) -> sitk.Image:
477
        """Get the image as an instance of :class:`sitk.Image`."""
478
        return nib_to_sitk(self.data, self.affine, **kwargs)
479
480
    def as_pil(self):
481
        """Get the image as an instance of :class:`PIL.Image`.
482
483
        .. note:: Values will be clamped to 0-255 and cast to uint8.
484
        .. note:: To use this method, `Pillow` needs to be installed:
485
            `pip install Pillow`.
486
        """
487
        try:
488
            from PIL import Image as ImagePIL
489
        except ModuleNotFoundError as e:
490
            message = (
491
                'Please install Pillow to use Image.as_pil():'
492
                ' pip install Pillow'
493
            )
494
            raise RuntimeError(message) from e
495
496
        self.check_is_2d()
497
        tensor = self.data
498
        if len(tensor) == 1:
499
            tensor = torch.cat(3 * [tensor])
500
        if len(tensor) != 3:
501
            raise RuntimeError('The image must have 1 or 3 channels')
502
        tensor = tensor.permute(3, 1, 2, 0)[0]
503
        array = tensor.clamp(0, 255).numpy()
504
        return ImagePIL.fromarray(array.astype(np.uint8))
505
506
    def get_center(self, lps: bool = False) -> TypeTripletFloat:
507
        """Get image center in RAS+ or LPS+ coordinates.
508
509
        Args:
510
            lps: If ``True``, the coordinates will be in LPS+ orientation, i.e.
511
                the first dimension grows towards the left, etc. Otherwise, the
512
                coordinates will be in RAS+ orientation.
513
        """
514
        size = np.array(self.spatial_shape)
515
        center_index = (size - 1) / 2
516
        r, a, s = nib.affines.apply_affine(self.affine, center_index)
517
        if lps:
518
            return (-r, -a, s)
519
        else:
520
            return (r, a, s)
521
522
    def set_check_nans(self, check_nans: bool) -> None:
523
        self.check_nans = check_nans
524
525
    def plot(self, **kwargs) -> None:
526
        """Plot image."""
527
        if self.is_2d():
528
            self.as_pil().show()
529
        else:
530
            from ..visualization import plot_volume  # avoid circular import
531
            plot_volume(self, **kwargs)
532
533
534
class ScalarImage(Image):
535
    """Image whose pixel values represent scalars.
536
537
    Example:
538
        >>> import torch
539
        >>> import torchio as tio
540
        >>> # Loading from a file
541
        >>> t1_image = tio.ScalarImage('t1.nii.gz')
542
        >>> dmri = tio.ScalarImage(tensor=torch.rand(32, 128, 128, 88))
543
        >>> image = tio.ScalarImage('safe_image.nrrd', check_nans=False)
544
        >>> data, affine = image.data, image.affine
545
        >>> affine.shape
546
        (4, 4)
547
        >>> image.data is image[tio.DATA]
548
        True
549
        >>> image.data is image.tensor
550
        True
551
        >>> type(image.data)
552
        torch.Tensor
553
554
    See :class:`~torchio.Image` for more information.
555
    """
556
    def __init__(self, *args, **kwargs):
557
        if 'type' in kwargs and kwargs['type'] != INTENSITY:
558
            raise ValueError('Type of ScalarImage is always torchio.INTENSITY')
559
        kwargs.update({'type': INTENSITY})
560
        super().__init__(*args, **kwargs)
561
562
563
class LabelMap(Image):
564
    """Image whose pixel values represent categorical labels.
565
566
    Intensity transforms are not applied to these images.
567
568
    Example:
569
        >>> import torch
570
        >>> import torchio as tio
571
        >>> labels = tio.LabelMap(tensor=torch.rand(1, 128, 128, 68) > 0.5)
572
        >>> labels = tio.LabelMap('t1_seg.nii.gz')  # loading from a file
573
        >>> tpm = tio.LabelMap(                     # loading from files
574
        ...     'gray_matter.nii.gz',
575
        ...     'white_matter.nii.gz',
576
        ...     'csf.nii.gz',
577
        ... )
578
579
    See :class:`~torchio.Image` for more information.
580
    """
581
    def __init__(self, *args, **kwargs):
582
        if 'type' in kwargs and kwargs['type'] != LABEL:
583
            raise ValueError('Type of LabelMap is always torchio.LABEL')
584
        kwargs.update({'type': LABEL})
585
        super().__init__(*args, **kwargs)
586