Passed
Push — master ( 0d2a88...eb3c35 )
by Fernando
01:36
created

torchio.data.image.Image.__init__()   C

Complexity

Conditions 9

Size

Total Lines 40
Code Lines 33

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 9
eloc 33
nop 9
dl 0
loc 40
rs 6.6666
c 0
b 0
f 0

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
import warnings
2
from pathlib import Path
3
from typing import Any, Dict, Tuple, Optional
4
5
import torch
6
import humanize
7
import numpy as np
8
import nibabel as nib
9
import SimpleITK as sitk
10
11
from ..utils import (
12
    nib_to_sitk,
13
    get_rotation_and_spacing_from_affine,
14
    get_stem,
15
    ensure_4d,
16
)
17
from ..torchio import (
18
    TypeData,
19
    TypePath,
20
    TypeTripletInt,
21
    TypeTripletFloat,
22
    DATA,
23
    TYPE,
24
    AFFINE,
25
    PATH,
26
    STEM,
27
    INTENSITY,
28
    LABEL,
29
)
30
from .io import read_image, write_image
31
32
33
PROTECTED_KEYS = DATA, AFFINE, TYPE, PATH, STEM
34
35
36
class Image(dict):
37
    r"""TorchIO image.
38
39
    For information about medical image orientation, check out `NiBabel docs`_,
40
    the `3D Slicer wiki`_, `Graham Wideman's website`_, `FSL docs`_ or
41
    `SimpleITK docs`_.
42
43
    Args:
44
        path: Path to a file that can be read by
45
            :mod:`SimpleITK` or :mod:`nibabel`, or to a directory containing
46
            DICOM files. If :py:attr:`tensor` is given, the data in
47
            :py:attr:`path` will not be read. The data is expected to be 2D or
48
            3D, and may have multiple channels (see :attr:`num_spatial_dims` and
49
            :attr:`channels_last`).
50
        type: Type of image, such as :attr:`torchio.INTENSITY` or
51
            :attr:`torchio.LABEL`. This will be used by the transforms to
52
            decide whether to apply an operation, or which interpolation to use
53
            when resampling. For example, `preprocessing`_ and `augmentation`_
54
            intensity transforms will only be applied to images with type
55
            :attr:`torchio.INTENSITY`. Spatial transforms will be applied to
56
            all types, and nearest neighbor interpolation is always used to
57
            resample images with type :attr:`torchio.LABEL`.
58
            The type :attr:`torchio.SAMPLING_MAP` may be used with instances of
59
            :py:class:`~torchio.data.sampler.weighted.WeightedSampler`.
60
        tensor: If :py:attr:`path` is not given, :attr:`tensor` must be a 4D
61
            :py:class:`torch.Tensor` or NumPy array with dimensions
62
            :math:`(C, D, H, W)`. If it is not 4D, TorchIO will try to guess
63
            the dimensions meanings. If 2D, the shape will be interpreted as
64
            :math:`(H, W)`. If 3D, the number of spatial dimensions should be
65
            determined in :attr:`num_spatial_dims`. If :attr:`num_spatial_dims`
66
            is not given and the shape is 3 along the first or last dimensions,
67
            it will be interpreted as a multichannel 2D image. Otherwise, it
68
            be interpreted as a 3D image with a single channel.
69
        affine: If :attr:`path` is not given, :attr:`affine` must be a
70
            :math:`4 \times 4` NumPy array. If ``None``, :attr:`affine` is an
71
            identity matrix.
72
        check_nans: If ``True``, issues a warning if NaNs are found
73
            in the image. If ``False``, images will not be checked for the
74
            presence of NaNs.
75
        num_spatial_dims: If ``2`` and the input tensor has 3 dimensions, it
76
            will be interpreted as a multichannel 2D image. If ``3`` and the
77
            input has 3 dimensions, it will be interpreted as a
78
            single-channel 3D volume.
79
        channels_last: If ``True``, the last dimension of the input will be
80
            interpreted as the channels. Defaults to ``True`` if :attr:`path` is
81
            given and ``False`` otherwise.
82
        **kwargs: Items that will be added to the image dictionary, e.g.
83
            acquisition parameters.
84
85
    Example:
86
        >>> import torch
87
        >>> import torchio
88
        >>> # Loading from a file
89
        >>> t1_image = torchio.Image('t1.nii.gz', type=torchio.INTENSITY)
90
        >>> label_image = torchio.Image('t1_seg.nii.gz', type=torchio.LABEL)
91
        >>> image = torchio.Image(tensor=torch.rand(3, 4, 5))
92
        >>> image = torchio.Image('safe_image.nrrd', check_nans=False)
93
        >>> data, affine = image.data, image.affine
94
        >>> affine.shape
95
        (4, 4)
96
        >>> image.data is image[torchio.DATA]
97
        True
98
        >>> image.data is image.tensor
99
        True
100
        >>> type(image.data)
101
        torch.Tensor
102
103
    TorchIO images are `lazy loaders`_, i.e. the data is only loaded from disk
104
    when needed.
105
106
    Example:
107
        >>> import torchio
108
        >>> image = torchio.Image('t1.nii.gz')
109
        >>> image  # not loaded yet
110
        Image(path: t1.nii.gz; type: intensity)
111
        >>> times_two = 2 * image.data  # data is loaded and cached here
112
        >>> image
113
        Image(shape: (1, 256, 256, 176); spacing: (1.00, 1.00, 1.00); orientation: PIR+; memory: 44.0 MiB; type: intensity)
114
        >>> image.save('doubled_image.nii.gz')
115
116
    .. _lazy loaders: https://en.wikipedia.org/wiki/Lazy_loading
117
    .. _preprocessing: https://torchio.readthedocs.io/transforms/preprocessing.html#intensity
118
    .. _augmentation: https://torchio.readthedocs.io/transforms/augmentation.html#intensity
119
    .. _NiBabel docs: https://nipy.org/nibabel/image_orientation.html
120
    .. _3D Slicer wiki: https://www.slicer.org/wiki/Coordinate_systems
121
    .. _FSL docs: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
122
    .. _SimpleITK docs: https://simpleitk.readthedocs.io/en/master/fundamentalConcepts.html
123
    .. _Graham Wideman's website: http://www.grahamwideman.com/gw/brain/orientation/orientterms.htm
124
    """
125
    def __init__(
126
            self,
127
            path: Optional[TypePath] = None,
128
            type: str = INTENSITY,
129
            tensor: Optional[TypeData] = None,
130
            affine: Optional[TypeData] = None,
131
            check_nans: bool = True,
132
            num_spatial_dims: Optional[int] = None,
133
            channels_last: Optional[bool] = None,
134
            **kwargs: Dict[str, Any],
135
            ):
136
        self.check_nans = check_nans
137
        self.num_spatial_dims = num_spatial_dims
138
139
        if path is None and tensor is None:
140
            raise ValueError('A value for path or tensor must be given')
141
        self._loaded = False
142
143
        # Number of channels are typically stored in the last dimensions in disk
144
        # But if a tensor is given, the channels should be in the first dim
145
        if channels_last is None:
146
            channels_last = path is not None
147
        self.channels_last = channels_last
148
149
        tensor = self.parse_tensor(tensor)
150
        affine = self.parse_affine(affine)
151
        if tensor is not None:
152
            self[DATA] = tensor
153
            self[AFFINE] = affine
154
            self._loaded = True
155
        for key in PROTECTED_KEYS:
156
            if key in kwargs:
157
                message = f'Key "{key}" is reserved. Use a different one'
158
                raise ValueError(message)
159
160
        super().__init__(**kwargs)
161
        self.path = self._parse_path(path)
162
        self[PATH] = '' if self.path is None else str(self.path)
163
        self[STEM] = '' if self.path is None else get_stem(self.path)
164
        self[TYPE] = type
165
166
    def __repr__(self):
167
        properties = []
168
        if self._loaded:
169
            properties.extend([
170
                f'shape: {self.shape}',
171
                f'spacing: {self.get_spacing_string()}',
172
                f'orientation: {"".join(self.orientation)}+',
173
                f'memory: {humanize.naturalsize(self.memory, binary=True)}',
174
            ])
175
        else:
176
            properties.append(f'path: "{self.path}"')
177
        properties.append(f'type: {self.type}')
178
        properties = '; '.join(properties)
179
        string = f'{self.__class__.__name__}({properties})'
180
        return string
181
182
    def __getitem__(self, item):
183
        if item in (DATA, AFFINE):
184
            if item not in self:
185
                self._load()
186
        return super().__getitem__(item)
187
188
    def __array__(self):
189
        return self[DATA].numpy()
190
191
    @property
192
    def data(self):
193
        return self[DATA]
194
195
    @property
196
    def tensor(self):
197
        return self.data
198
199
    @property
200
    def affine(self):
201
        return self[AFFINE]
202
203
    @property
204
    def type(self):
205
        return self[TYPE]
206
207
    @property
208
    def shape(self) -> Tuple[int, int, int, int]:
209
        return tuple(self.data.shape)
210
211
    @property
212
    def spatial_shape(self) -> TypeTripletInt:
213
        return self.shape[1:]
214
215
    @property
216
    def orientation(self):
217
        return nib.aff2axcodes(self.affine)
218
219
    @property
220
    def spacing(self):
221
        _, spacing = get_rotation_and_spacing_from_affine(self.affine)
222
        return tuple(spacing)
223
224
    @property
225
    def memory(self):
226
        return np.prod(self.shape) * 4  # float32, i.e. 4 bytes per voxel
227
228
    def get_spacing_string(self):
229
        strings = [f'{n:.2f}' for n in self.spacing]
230
        string = f'({", ".join(strings)})'
231
        return string
232
233
    @staticmethod
234
    def _parse_path(path: TypePath) -> Path:
235
        if path is None:
236
            return None
237
        try:
238
            path = Path(path).expanduser()
239
        except TypeError:
240
            message = f'Conversion to path not possible for variable: {path}'
241
            raise TypeError(message)
242
        if not (path.is_file() or path.is_dir()):  # might be a dir with DICOM
243
            raise FileNotFoundError(f'File not found: {path}')
244
        return path
245
246
    def parse_tensor(self, tensor: TypeData) -> torch.Tensor:
247
        if tensor is None:
248
            return None
249
        if isinstance(tensor, np.ndarray):
250
            tensor = torch.from_numpy(tensor)
251
        tensor = self.parse_tensor_shape(tensor)
252
        if self.check_nans and torch.isnan(tensor).any():
253
            warnings.warn(f'NaNs found in tensor')
254
        return tensor
255
256
    def parse_tensor_shape(self, tensor: torch.Tensor) -> torch.Tensor:
257
        return ensure_4d(tensor, self.channels_last, self.num_spatial_dims)
258
259
    @staticmethod
260
    def parse_affine(affine: np.ndarray) -> np.ndarray:
261
        if affine is None:
262
            return np.eye(4)
263
        if not isinstance(affine, np.ndarray):
264
            raise TypeError(f'Affine must be a NumPy array, not {type(affine)}')
265
        if affine.shape != (4, 4):
266
            raise ValueError(f'Affine shape must be (4, 4), not {affine.shape}')
267
        return affine
268
269
    def _load(self) -> Tuple[torch.Tensor, np.ndarray]:
270
        r"""Load the image from disk.
271
272
        Returns:
273
            Tuple containing a 4D tensor of size :math:`(C, D, H, W)` and a 2D
274
            :math:`4 \times 4` affine matrix to convert voxel indices to world
275
            coordinates.
276
        """
277
        if self._loaded:
278
            return
279
        tensor, affine = read_image(self.path)
280
        tensor = self.parse_tensor_shape(tensor)
281
282
        if self.check_nans and torch.isnan(tensor).any():
283
            warnings.warn(f'NaNs found in file "{self.path}"')
284
        self[DATA] = tensor
285
        self[AFFINE] = affine
286
        self._loaded = True
287
288
    def save(self, path, squeeze=True, channels_last=True):
289
        """Save image to disk.
290
291
        Args:
292
            path: String or instance of :py:class:`pathlib.Path`.
293
            squeeze: If ``True``, the singleton dimensions will be removed
294
                before saving.
295
            channels_last: If ``True``, the channels will be saved in the last
296
                dimension.
297
        """
298
        write_image(
299
            self[DATA],
300
            self[AFFINE],
301
            path,
302
            squeeze=squeeze,
303
            channels_last=channels_last,
304
        )
305
306
    def is_2d(self) -> bool:
307
        return self.shape[-3] == 1
308
309
    def numpy(self) -> np.ndarray:
310
        """Get a NumPy array containing the image data."""
311
        return np.asarray(self)
312
313
    def as_sitk(self) -> sitk.Image:
314
        """Get the image as an instance of :py:class:`sitk.Image`."""
315
        return nib_to_sitk(self[DATA], self[AFFINE])
316
317
    def get_center(self, lps: bool = False) -> TypeTripletFloat:
318
        """Get image center in RAS+ or LPS+ coordinates.
319
320
        Args:
321
            lps: If ``True``, the coordinates will be in LPS+ orientation, i.e.
322
                the first dimension grows towards the left, etc. Otherwise, the
323
                coordinates will be in RAS+ orientation.
324
        """
325
        size = np.array(self.spatial_shape)
326
        center_index = (size - 1) / 2
327
        r, a, s = nib.affines.apply_affine(self.affine, center_index)
328
        if lps:
329
            return (-r, -a, s)
330
        else:
331
            return (r, a, s)
332
333
    def set_check_nans(self, check_nans: bool):
334
        self.check_nans = check_nans
335
336
    def crop(self, index_ini: TypeTripletInt, index_fin: TypeTripletInt):
337
        new_origin = nib.affines.apply_affine(self.affine, index_ini)
338
        new_affine = self.affine.copy()
339
        new_affine[:3, 3] = new_origin
340
        i0, j0, k0 = index_ini
341
        i1, j1, k1 = index_fin
342
        patch = self.data[0, i0:i1, j0:j1, k0:k1].clone()
343
        kwargs = dict(tensor=patch, affine=new_affine, type=self.type, path=self.path)
344
        for key, value in self.items():
345
            if key in PROTECTED_KEYS: continue
346
            kwargs[key] = value  # should I copy? deepcopy?
347
        return self.__class__(**kwargs)
348
349
350
class ScalarImage(Image):
351
    """Alias for :py:class:`~torchio.Image` of type :py:attr:`torchio.INTENSITY`.
352
353
    Example:
354
        >>> import torch
355
        >>> import torchio
356
        >>> image = torchio.ScalarImage('t1.nii.gz')  # loading from a file
357
        >>> image = torchio.ScalarImage(tensor=torch.rand(128, 128, 68))  # from tensor
358
        >>> data, affine = image.data, image.affine
359
        >>> affine.shape
360
        (4, 4)
361
        >>> image.data is image[torchio.DATA]
362
        True
363
        >>> image.data is image.tensor
364
        True
365
        >>> type(image.data)
366
        torch.Tensor
367
368
    See :py:class:`~torchio.Image` for more information.
369
370
    Raises:
371
        ValueError: A :py:attr:`type` is used for instantiation.
372
    """
373
    def __init__(self, *args, **kwargs):
374
        if 'type' in kwargs and kwargs['type'] != INTENSITY:
375
            raise ValueError('Type of ScalarImage is always torchio.INTENSITY')
376
        kwargs.update({'type': INTENSITY})
377
        super().__init__(*args, **kwargs)
378
379
380
class LabelMap(Image):
381
    """Alias for :py:class:`~torchio.Image` of type :py:attr:`torchio.LABEL`.
382
383
    Example:
384
        >>> import torch
385
        >>> import torchio
386
        >>> labels = torchio.LabelMap(tensor=torch.rand(128, 128, 68) > 0.5)
387
        >>> labels = torchio.LabelMap('t1_seg.nii.gz')  # loading from a file
388
389
    See :py:class:`~torchio.data.image.Image` for more information.
390
391
    Raises:
392
        ValueError: If a value for :py:attr:`type` is given.
393
    """
394
    def __init__(self, *args, **kwargs):
395
        if 'type' in kwargs and kwargs['type'] != LABEL:
396
            raise ValueError('Type of LabelMap is always torchio.LABEL')
397
        kwargs.update({'type': LABEL})
398
        super().__init__(*args, **kwargs)
399