|
1
|
|
|
import urllib.parse |
|
2
|
|
|
|
|
3
|
|
|
from ...utils import compress |
|
4
|
|
|
from ...data import ScalarImage, LabelMap |
|
5
|
|
|
from ...download import download_and_extract_archive |
|
6
|
|
|
from .mni import SubjectMNI |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
TISSUES_2008 = { |
|
10
|
|
|
1: 'Cerebro-spinal fluid', |
|
11
|
|
|
2: 'Gray Matter', |
|
12
|
|
|
3: 'White Matter', |
|
13
|
|
|
4: 'Fat', |
|
14
|
|
|
5: 'Muscles', |
|
15
|
|
|
6: 'Skin and Muscles', |
|
16
|
|
|
7: 'Skull', |
|
17
|
|
|
9: 'Fat 2', |
|
18
|
|
|
10: 'Dura', |
|
19
|
|
|
11: 'Marrow', |
|
20
|
|
|
12: 'Vessels', |
|
21
|
|
|
} |
|
22
|
|
|
|
|
23
|
|
|
|
|
24
|
|
|
class Colin27(SubjectMNI): |
|
25
|
|
|
r"""Colin27 MNI template. |
|
26
|
|
|
|
|
27
|
|
|
More information can be found in the website of the |
|
28
|
|
|
`1998 <http://nist.mni.mcgill.ca/?p=935>`_ and |
|
29
|
|
|
`2008 <http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27Highres>`_ |
|
30
|
|
|
versions. |
|
31
|
|
|
|
|
32
|
|
|
.. image:: http://www.bic.mni.mcgill.ca/uploads/ServicesAtlases/mni_colin27_2008.jpg |
|
33
|
|
|
:alt: MNI Colin 27 2008 version |
|
34
|
|
|
|
|
35
|
|
|
Arguments: |
|
36
|
|
|
version: Template year. It can be ``1998`` or ``2008``. |
|
37
|
|
|
|
|
38
|
|
|
.. warning:: The resolution of the ``2008`` version is quite high. The |
|
39
|
|
|
subject instance will contain four images of size |
|
40
|
|
|
:math:`362 \times 434 \times 362`, therefore applying a transform to |
|
41
|
|
|
it might take longer than expected. |
|
42
|
|
|
|
|
43
|
|
|
Example: |
|
44
|
|
|
>>> import torchio as tio |
|
45
|
|
|
>>> colin_1998 = tio.datasets.Colin27(version=1998) |
|
46
|
|
|
>>> colin_1998 |
|
47
|
|
|
Colin27(Keys: ('t1', 'head', 'brain'); images: 3) |
|
48
|
|
|
>>> colin_1998.load() |
|
49
|
|
|
>>> colin_1998.t1 |
|
50
|
|
|
ScalarImage(shape: (1, 181, 217, 181); spacing: (1.00, 1.00, 1.00); orientation: RAS+; memory: 27.1 MiB; type: intensity) |
|
51
|
|
|
>>> |
|
52
|
|
|
>>> colin_2008 = tio.datasets.Colin27(version=2008) |
|
53
|
|
|
>>> colin_2008 |
|
54
|
|
|
Colin27(Keys: ('t1', 't2', 'pd', 'cls'); images: 4) |
|
55
|
|
|
>>> colin_2008.load() |
|
56
|
|
|
>>> colin_2008.t1 |
|
57
|
|
|
ScalarImage(shape: (1, 362, 434, 362); spacing: (0.50, 0.50, 0.50); orientation: RAS+; memory: 217.0 MiB; type: intensity) |
|
58
|
|
|
|
|
59
|
|
|
""" # noqa: E501 |
|
60
|
|
|
def __init__(self, version=1998): |
|
61
|
|
|
if version not in (1998, 2008): |
|
62
|
|
|
raise ValueError(f'Version must be 1998 or 2008, not "{version}"') |
|
63
|
|
|
self.version = version |
|
64
|
|
|
self.name = f'mni_colin27_{version}_nifti' |
|
65
|
|
|
self.url_dir = urllib.parse.urljoin(self.url_base, 'colin27/') |
|
66
|
|
|
self.filename = f'{self.name}.zip' |
|
67
|
|
|
self.url = urllib.parse.urljoin(self.url_dir, self.filename) |
|
68
|
|
|
if not self.download_root.is_dir(): |
|
69
|
|
|
download_and_extract_archive( |
|
70
|
|
|
self.url, |
|
71
|
|
|
download_root=self.download_root, |
|
72
|
|
|
filename=self.filename, |
|
73
|
|
|
) |
|
74
|
|
|
|
|
75
|
|
|
# Fix label map (https://github.com/fepegar/torchio/issues/220) |
|
76
|
|
|
if version == 2008: |
|
77
|
|
|
path = self.download_root / 'colin27_cls_tal_hires.nii' |
|
78
|
|
|
cls_image = LabelMap(path) |
|
79
|
|
|
cls_image.set_data(cls_image.data.round().byte()) |
|
80
|
|
|
cls_image.save(path) |
|
81
|
|
|
|
|
82
|
|
|
(self.download_root / self.filename).unlink() |
|
83
|
|
|
for path in self.download_root.glob('*.nii'): |
|
84
|
|
|
compress(path) |
|
85
|
|
|
path.unlink() |
|
86
|
|
|
|
|
87
|
|
|
try: |
|
88
|
|
|
subject_dict = self.get_subject_dict(extension='.nii.gz') |
|
89
|
|
|
except FileNotFoundError: # for backward compatibility |
|
90
|
|
|
subject_dict = self.get_subject_dict(extension='.nii') |
|
91
|
|
|
super().__init__(subject_dict) |
|
92
|
|
|
|
|
93
|
|
|
def get_subject_dict(self, extension): |
|
94
|
|
|
if self.version == 1998: |
|
95
|
|
|
t1, head, mask = [ |
|
96
|
|
|
self.download_root / f'colin27_t1_tal_lin{suffix}{extension}' |
|
97
|
|
|
for suffix in ('', '_headmask', '_mask') |
|
98
|
|
|
] |
|
99
|
|
|
subject_dict = { |
|
100
|
|
|
't1': ScalarImage(t1), |
|
101
|
|
|
'head': LabelMap(head), |
|
102
|
|
|
'brain': LabelMap(mask), |
|
103
|
|
|
} |
|
104
|
|
|
elif self.version == 2008: |
|
105
|
|
|
t1, t2, pd, label = [ |
|
106
|
|
|
self.download_root / f'colin27_{name}_tal_hires{extension}' |
|
107
|
|
|
for name in ('t1', 't2', 'pd', 'cls') |
|
108
|
|
|
] |
|
109
|
|
|
subject_dict = { |
|
110
|
|
|
't1': ScalarImage(t1), |
|
111
|
|
|
't2': ScalarImage(t2), |
|
112
|
|
|
'pd': ScalarImage(pd), |
|
113
|
|
|
'cls': LabelMap(label, labels=TISSUES_2008), |
|
114
|
|
|
} |
|
115
|
|
|
return subject_dict |
|
|
|
|
|
|
116
|
|
|
|