|
@@ 34-51 (lines=18) @@
|
| 31 |
|
self.sample_subject['label'][DATA] == 1 |
| 32 |
|
) |
| 33 |
|
|
| 34 |
|
def test_deterministic_simulation_with_discretized_label_map(self): |
| 35 |
|
"""The transform creates an image where values are equal to given mean |
| 36 |
|
if standard deviation is zero. |
| 37 |
|
Using a discretized label map.""" |
| 38 |
|
transform = RandomLabelsToImage( |
| 39 |
|
label_key='label', |
| 40 |
|
mean=[0.5, 2], |
| 41 |
|
std=[0, 0], |
| 42 |
|
discretize=True |
| 43 |
|
) |
| 44 |
|
transformed = transform(self.sample_subject) |
| 45 |
|
self.assertTensorEqual( |
| 46 |
|
transformed['image_from_labels'][DATA] == 0.5, |
| 47 |
|
self.sample_subject['label'][DATA] == 0 |
| 48 |
|
) |
| 49 |
|
self.assertTensorEqual( |
| 50 |
|
transformed['image_from_labels'][DATA] == 2, |
| 51 |
|
self.sample_subject['label'][DATA] == 1 |
| 52 |
|
) |
| 53 |
|
|
| 54 |
|
def test_deterministic_simulation_with_pv_map(self): |
|
@@ 15-31 (lines=17) @@
|
| 12 |
|
transformed = transform(self.sample_subject) |
| 13 |
|
self.assertIn('image_from_labels', transformed) |
| 14 |
|
|
| 15 |
|
def test_deterministic_simulation(self): |
| 16 |
|
"""The transform creates an image where values are equal to given |
| 17 |
|
mean if standard deviation is zero. |
| 18 |
|
Using a label map.""" |
| 19 |
|
transform = RandomLabelsToImage( |
| 20 |
|
label_key='label', |
| 21 |
|
mean=[0.5, 2], |
| 22 |
|
std=[0, 0] |
| 23 |
|
) |
| 24 |
|
transformed = transform(self.sample_subject) |
| 25 |
|
self.assertTensorEqual( |
| 26 |
|
transformed['image_from_labels'][DATA] == 0.5, |
| 27 |
|
self.sample_subject['label'][DATA] == 0 |
| 28 |
|
) |
| 29 |
|
self.assertTensorEqual( |
| 30 |
|
transformed['image_from_labels'][DATA] == 2, |
| 31 |
|
self.sample_subject['label'][DATA] == 1 |
| 32 |
|
) |
| 33 |
|
|
| 34 |
|
def test_deterministic_simulation_with_discretized_label_map(self): |