1
|
|
|
from pathlib import Path |
2
|
|
|
from typing import Dict, Callable, Tuple, Sequence, Union, Optional |
3
|
|
|
|
4
|
|
|
import torch |
5
|
|
|
import numpy as np |
6
|
|
|
from tqdm import tqdm |
7
|
|
|
|
8
|
|
|
from ....typing import TypePath |
9
|
|
|
from ....data.io import read_image |
10
|
|
|
from ....data.subject import Subject |
11
|
|
|
from .normalization_transform import NormalizationTransform, TypeMaskingMethod |
12
|
|
|
|
13
|
|
|
DEFAULT_CUTOFF = 0.01, 0.99 |
14
|
|
|
STANDARD_RANGE = 0, 100 |
15
|
|
|
TypeLandmarks = Union[TypePath, Dict[str, Union[TypePath, np.ndarray]]] |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
class HistogramStandardization(NormalizationTransform): |
19
|
|
|
"""Perform histogram standardization of intensity values. |
20
|
|
|
|
21
|
|
|
Implementation of `New variants of a method of MRI scale |
22
|
|
|
standardization <https://ieeexplore.ieee.org/document/836373>`_. |
23
|
|
|
|
24
|
|
|
See example in :func:`torchio.transforms.HistogramStandardization.train`. |
25
|
|
|
|
26
|
|
|
Args: |
27
|
|
|
landmarks: Dictionary (or path to a PyTorch file with ``.pt`` or ``.pth`` |
28
|
|
|
extension in which a dictionary has been saved) whose keys are |
29
|
|
|
image names in the subject and values are NumPy arrays or paths to |
30
|
|
|
NumPy arrays defining the landmarks after training with |
31
|
|
|
:meth:`torchio.transforms.HistogramStandardization.train`. |
32
|
|
|
masking_method: See |
33
|
|
|
:class:`~torchio.transforms.preprocessing.intensity.NormalizationTransform`. |
34
|
|
|
**kwargs: See :class:`~torchio.transforms.Transform` for additional |
35
|
|
|
keyword arguments. |
36
|
|
|
|
37
|
|
|
Example: |
38
|
|
|
>>> import torch |
39
|
|
|
>>> import torchio as tio |
40
|
|
|
>>> landmarks = { |
41
|
|
|
... 't1': 't1_landmarks.npy', |
42
|
|
|
... 't2': 't2_landmarks.npy', |
43
|
|
|
... } |
44
|
|
|
>>> transform = tio.HistogramStandardization(landmarks) |
45
|
|
|
>>> torch.save(landmarks, 'path_to_landmarks.pth') |
46
|
|
|
>>> transform = tio.HistogramStandardization('path_to_landmarks.pth') |
47
|
|
|
""" # noqa: E501 |
48
|
|
|
def __init__( |
49
|
|
|
self, |
50
|
|
|
landmarks: TypeLandmarks, |
51
|
|
|
masking_method: TypeMaskingMethod = None, |
52
|
|
|
**kwargs |
53
|
|
|
): |
54
|
|
|
super().__init__(masking_method=masking_method, **kwargs) |
55
|
|
|
self.landmarks = landmarks |
56
|
|
|
self.landmarks_dict = self._parse_landmarks(landmarks) |
57
|
|
|
self.args_names = 'landmarks', 'masking_method' |
58
|
|
|
|
59
|
|
|
@staticmethod |
60
|
|
|
def _parse_landmarks(landmarks: TypeLandmarks) -> Dict[str, np.ndarray]: |
61
|
|
|
if isinstance(landmarks, (str, Path)): |
62
|
|
|
path = Path(landmarks) |
63
|
|
|
if path.suffix not in ('.pt', '.pth'): |
64
|
|
|
message = ( |
65
|
|
|
'The landmarks file must have extension .pt or .pth,' |
66
|
|
|
f' not "{path.suffix}"' |
67
|
|
|
) |
68
|
|
|
raise ValueError(message) |
69
|
|
|
landmarks_dict = torch.load(path) |
70
|
|
|
else: |
71
|
|
|
landmarks_dict = landmarks |
72
|
|
|
for key, value in landmarks_dict.items(): |
73
|
|
|
if isinstance(value, (str, Path)): |
74
|
|
|
landmarks_dict[key] = np.load(value) |
75
|
|
|
return landmarks_dict |
76
|
|
|
|
77
|
|
|
def apply_normalization( |
78
|
|
|
self, |
79
|
|
|
subject: Subject, |
80
|
|
|
image_name: str, |
81
|
|
|
mask: torch.Tensor, |
82
|
|
|
) -> None: |
83
|
|
|
if image_name not in self.landmarks_dict: |
84
|
|
|
keys = tuple(self.landmarks_dict.keys()) |
85
|
|
|
message = ( |
86
|
|
|
f'Image name "{image_name}" should be a key in the' |
87
|
|
|
f' landmarks dictionary, whose keys are {keys}' |
88
|
|
|
) |
89
|
|
|
raise KeyError(message) |
90
|
|
|
image = subject[image_name] |
91
|
|
|
landmarks = self.landmarks_dict[image_name] |
92
|
|
|
normalized = normalize(image.data, landmarks, mask=mask) |
93
|
|
|
image.set_data(normalized) |
94
|
|
|
|
95
|
|
|
@classmethod |
96
|
|
|
def train( |
97
|
|
|
cls, |
98
|
|
|
images_paths: Sequence[TypePath], |
99
|
|
|
cutoff: Optional[Tuple[float, float]] = None, |
100
|
|
|
mask_path: Optional[Union[Sequence[TypePath], TypePath]] = None, |
101
|
|
|
masking_function: Optional[Callable] = None, |
102
|
|
|
output_path: Optional[TypePath] = None, |
103
|
|
|
) -> np.ndarray: |
104
|
|
|
"""Extract average histogram landmarks from images used for training. |
105
|
|
|
|
106
|
|
|
Args: |
107
|
|
|
images_paths: List of image paths used to train. |
108
|
|
|
cutoff: Optional minimum and maximum quantile values, |
109
|
|
|
respectively, that are used to select a range of intensity of |
110
|
|
|
interest. Equivalent to :math:`pc_1` and :math:`pc_2` in |
111
|
|
|
`Nyúl and Udupa's paper <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.204.102&rep=rep1&type=pdf>`_. |
112
|
|
|
mask_path: Path (or list of paths) to a binary image that will be |
113
|
|
|
used to select the voxels use to compute the stats during |
114
|
|
|
histogram training. If ``None``, all voxels in the image will |
115
|
|
|
be used. |
116
|
|
|
masking_function: Function used to extract voxels used for |
117
|
|
|
histogram training. |
118
|
|
|
output_path: Optional file path with extension ``.txt`` or |
119
|
|
|
``.npy``, where the landmarks will be saved. |
120
|
|
|
|
121
|
|
|
Example: |
122
|
|
|
|
123
|
|
|
>>> import torch |
124
|
|
|
>>> import numpy as np |
125
|
|
|
>>> from pathlib import Path |
126
|
|
|
>>> from torchio.transforms import HistogramStandardization |
127
|
|
|
>>> |
128
|
|
|
>>> t1_paths = ['subject_a_t1.nii', 'subject_b_t1.nii.gz'] |
129
|
|
|
>>> t2_paths = ['subject_a_t2.nii', 'subject_b_t2.nii.gz'] |
130
|
|
|
>>> |
131
|
|
|
>>> t1_landmarks_path = Path('t1_landmarks.npy') |
132
|
|
|
>>> t2_landmarks_path = Path('t2_landmarks.npy') |
133
|
|
|
>>> |
134
|
|
|
>>> t1_landmarks = ( |
135
|
|
|
... t1_landmarks_path |
136
|
|
|
... if t1_landmarks_path.is_file() |
137
|
|
|
... else HistogramStandardization.train(t1_paths) |
138
|
|
|
... ) |
139
|
|
|
>>> torch.save(t1_landmarks, t1_landmarks_path) |
140
|
|
|
>>> |
141
|
|
|
>>> t2_landmarks = ( |
142
|
|
|
... t2_landmarks_path |
143
|
|
|
... if t2_landmarks_path.is_file() |
144
|
|
|
... else HistogramStandardization.train(t2_paths) |
145
|
|
|
... ) |
146
|
|
|
>>> torch.save(t2_landmarks, t2_landmarks_path) |
147
|
|
|
>>> |
148
|
|
|
>>> landmarks_dict = { |
149
|
|
|
... 't1': t1_landmarks, |
150
|
|
|
... 't2': t2_landmarks, |
151
|
|
|
... } |
152
|
|
|
>>> |
153
|
|
|
>>> transform = HistogramStandardization(landmarks_dict) |
154
|
|
|
""" # noqa: E501 |
155
|
|
|
is_masks_list = isinstance(mask_path, Sequence) |
156
|
|
|
if is_masks_list and len(mask_path) != len(images_paths): |
157
|
|
|
message = ( |
158
|
|
|
f'Different number of images ({len(images_paths)})' |
159
|
|
|
f' and mask ({len(mask_path)}) paths found' |
160
|
|
|
) |
161
|
|
|
raise ValueError(message) |
162
|
|
|
quantiles_cutoff = DEFAULT_CUTOFF if cutoff is None else cutoff |
163
|
|
|
percentiles_cutoff = 100 * np.array(quantiles_cutoff) |
164
|
|
|
percentiles_database = [] |
165
|
|
|
percentiles = _get_percentiles(percentiles_cutoff) |
166
|
|
|
for i, image_file_path in enumerate(tqdm(images_paths)): |
167
|
|
|
tensor, _ = read_image(image_file_path) |
168
|
|
|
if masking_function is not None: |
169
|
|
|
mask = masking_function(tensor) |
170
|
|
|
else: |
171
|
|
|
if mask_path is None: |
172
|
|
|
mask = np.ones_like(tensor, dtype=bool) |
173
|
|
|
else: |
174
|
|
|
if is_masks_list: |
175
|
|
|
path = mask_path[i] |
176
|
|
|
else: |
177
|
|
|
path = mask_path |
178
|
|
|
mask, _ = read_image(path) |
179
|
|
|
mask = mask.numpy() > 0 |
180
|
|
|
array = tensor.numpy() |
181
|
|
|
percentile_values = np.percentile(array[mask], percentiles) |
182
|
|
|
percentiles_database.append(percentile_values) |
183
|
|
|
percentiles_database = np.vstack(percentiles_database) |
184
|
|
|
mapping = _get_average_mapping(percentiles_database) |
185
|
|
|
|
186
|
|
|
if output_path is not None: |
187
|
|
|
output_path = Path(output_path).expanduser() |
188
|
|
|
extension = output_path.suffix |
189
|
|
|
if extension == '.txt': |
190
|
|
|
modality = 'image' |
191
|
|
|
text = f'{modality} {" ".join(map(str, mapping))}' |
192
|
|
|
output_path.write_text(text) |
193
|
|
|
elif extension == '.npy': |
194
|
|
|
np.save(output_path, mapping) |
195
|
|
|
return mapping |
196
|
|
|
|
197
|
|
|
|
198
|
|
|
def _standardize_cutoff(cutoff: np.ndarray) -> np.ndarray: |
199
|
|
|
"""Standardize the cutoff values given in the configuration. |
200
|
|
|
|
201
|
|
|
Computes percentile landmark normalization by default. |
202
|
|
|
|
203
|
|
|
""" |
204
|
|
|
cutoff = np.asarray(cutoff) |
205
|
|
|
cutoff[0] = max(0, cutoff[0]) |
206
|
|
|
cutoff[1] = min(1, cutoff[1]) |
207
|
|
|
cutoff[0] = np.min([cutoff[0], 0.09]) |
208
|
|
|
cutoff[1] = np.max([cutoff[1], 0.91]) |
209
|
|
|
return cutoff |
210
|
|
|
|
211
|
|
|
|
212
|
|
|
def _get_average_mapping(percentiles_database: np.ndarray) -> np.ndarray: |
213
|
|
|
"""Map the landmarks of the database to the chosen range. |
214
|
|
|
|
215
|
|
|
Args: |
216
|
|
|
percentiles_database: Percentiles database over which to perform the |
217
|
|
|
averaging. |
218
|
|
|
""" |
219
|
|
|
# Assuming percentiles_database.shape == (num_data_points, num_percentiles) |
220
|
|
|
pc1 = percentiles_database[:, 0] |
221
|
|
|
pc2 = percentiles_database[:, -1] |
222
|
|
|
s1, s2 = STANDARD_RANGE |
223
|
|
|
slopes = (s2 - s1) / (pc2 - pc1) |
224
|
|
|
slopes = np.nan_to_num(slopes) |
225
|
|
|
intercepts = np.mean(s1 - slopes * pc1) |
226
|
|
|
num_images = len(percentiles_database) |
227
|
|
|
final_map = slopes.dot(percentiles_database) / num_images + intercepts |
228
|
|
|
return final_map |
229
|
|
|
|
230
|
|
|
|
231
|
|
|
def _get_percentiles(percentiles_cutoff: Tuple[float, float]) -> np.ndarray: |
232
|
|
|
quartiles = np.arange(25, 100, 25).tolist() |
233
|
|
|
deciles = np.arange(10, 100, 10).tolist() |
234
|
|
|
all_percentiles = list(percentiles_cutoff) + quartiles + deciles |
235
|
|
|
percentiles = sorted(set(all_percentiles)) |
236
|
|
|
return np.array(percentiles) |
237
|
|
|
|
238
|
|
|
|
239
|
|
|
def normalize( |
240
|
|
|
tensor: torch.Tensor, |
241
|
|
|
landmarks: np.ndarray, |
242
|
|
|
mask: Optional[np.ndarray], |
243
|
|
|
cutoff: Optional[Tuple[float, float]] = None, |
244
|
|
|
epsilon: float = 1e-5, |
245
|
|
|
) -> torch.Tensor: |
246
|
|
|
cutoff_ = DEFAULT_CUTOFF if cutoff is None else cutoff |
247
|
|
|
array = tensor.numpy() |
248
|
|
|
mapping = landmarks |
249
|
|
|
|
250
|
|
|
data = array |
251
|
|
|
shape = data.shape |
252
|
|
|
data = data.reshape(-1).astype(np.float32) |
253
|
|
|
|
254
|
|
|
if mask is None: |
255
|
|
|
mask = np.ones_like(data, bool) |
256
|
|
|
mask = mask.reshape(-1) |
257
|
|
|
|
258
|
|
|
range_to_use = [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12] |
259
|
|
|
|
260
|
|
|
quantiles_cutoff = _standardize_cutoff(cutoff_) |
261
|
|
|
percentiles_cutoff = 100 * np.array(quantiles_cutoff) |
262
|
|
|
percentiles = _get_percentiles(percentiles_cutoff) |
263
|
|
|
percentile_values = np.percentile(data[mask], percentiles) |
264
|
|
|
|
265
|
|
|
# Apply linear histogram standardization |
266
|
|
|
range_mapping = mapping[range_to_use] |
267
|
|
|
range_perc = percentile_values[range_to_use] |
268
|
|
|
diff_mapping = np.diff(range_mapping) |
269
|
|
|
diff_perc = np.diff(range_perc) |
270
|
|
|
|
271
|
|
|
# Handling the case where two landmarks are the same |
272
|
|
|
# for a given input image. This usually happens when |
273
|
|
|
# image background is not removed from the image. |
274
|
|
|
diff_perc[diff_perc < epsilon] = np.inf |
275
|
|
|
|
276
|
|
|
affine_map = np.zeros([2, len(range_to_use) - 1]) |
277
|
|
|
|
278
|
|
|
# Compute slopes of the linear models |
279
|
|
|
affine_map[0] = diff_mapping / diff_perc |
280
|
|
|
|
281
|
|
|
# Compute intercepts of the linear models |
282
|
|
|
affine_map[1] = range_mapping[:-1] - affine_map[0] * range_perc[:-1] |
283
|
|
|
|
284
|
|
|
bin_id = np.digitize(data, range_perc[1:-1], right=False) |
285
|
|
|
lin_img = affine_map[0, bin_id] |
286
|
|
|
aff_img = affine_map[1, bin_id] |
287
|
|
|
new_img = lin_img * data + aff_img |
288
|
|
|
new_img = new_img.reshape(shape) |
289
|
|
|
new_img = new_img.astype(np.float32) |
290
|
|
|
new_img = torch.as_tensor(new_img) |
291
|
|
|
return new_img |
292
|
|
|
|
293
|
|
|
|
294
|
|
|
# train_histogram kept for backward compatibility |
295
|
|
|
train = train_histogram = HistogramStandardization.train |
296
|
|
|
|