1
|
|
|
import warnings |
2
|
|
|
from pathlib import Path |
3
|
|
|
from typing import Tuple, Union, Optional |
4
|
|
|
|
5
|
|
|
import torch |
6
|
|
|
import numpy as np |
7
|
|
|
import nibabel as nib |
8
|
|
|
import SimpleITK as sitk |
9
|
|
|
|
10
|
|
|
from ..constants import REPO_URL |
11
|
|
|
from ..typing import TypePath, TypeData, TypeTripletFloat, TypeDirection |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
# Matrices used to switch between LPS and RAS |
15
|
|
|
FLIPXY_33 = np.diag([-1, -1, 1]) |
16
|
|
|
FLIPXY_44 = np.diag([-1, -1, 1, 1]) |
17
|
|
|
|
18
|
|
|
# Image formats that are typically 2D |
19
|
|
|
formats = ['.jpg', '.jpeg', '.bmp', '.png', '.tif', '.tiff'] |
20
|
|
|
IMAGE_2D_FORMATS = formats + [s.upper() for s in formats] |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def read_image(path: TypePath) -> Tuple[torch.Tensor, np.ndarray]: |
24
|
|
|
try: |
25
|
|
|
result = _read_sitk(path) |
26
|
|
|
except RuntimeError as e: # try with NiBabel |
27
|
|
|
message = ( |
28
|
|
|
f'Error loading image with SimpleITK:\n{e}\n\nTrying NiBabel...' |
29
|
|
|
) |
30
|
|
|
warnings.warn(message) |
31
|
|
|
try: |
32
|
|
|
result = _read_nibabel(path) |
33
|
|
|
except nib.loadsave.ImageFileError as e: |
34
|
|
|
message = ( |
35
|
|
|
f'File "{path}" not understood.' |
36
|
|
|
' Check supported formats by at' |
37
|
|
|
' https://simpleitk.readthedocs.io/en/master/IO.html#images' |
38
|
|
|
' and https://nipy.org/nibabel/api.html#file-formats' |
39
|
|
|
) |
40
|
|
|
raise RuntimeError(message) from e |
41
|
|
|
return result |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
def _read_nibabel(path: TypePath) -> Tuple[torch.Tensor, np.ndarray]: |
45
|
|
|
img = nib.load(str(path), mmap=False) |
46
|
|
|
data = img.get_fdata(dtype=np.float32) |
47
|
|
|
if data.ndim == 5: |
48
|
|
|
data = data[..., 0, :] |
49
|
|
|
data = data.transpose(3, 0, 1, 2) |
50
|
|
|
data = check_uint_to_int(data) |
51
|
|
|
tensor = torch.as_tensor(data) |
52
|
|
|
affine = img.affine |
53
|
|
|
return tensor, affine |
54
|
|
|
|
55
|
|
|
|
56
|
|
|
def _read_sitk(path: TypePath) -> Tuple[torch.Tensor, np.ndarray]: |
57
|
|
|
if Path(path).is_dir(): # assume DICOM |
58
|
|
|
image = _read_dicom(path) |
59
|
|
|
else: |
60
|
|
|
image = sitk.ReadImage(str(path)) |
61
|
|
|
data, affine = sitk_to_nib(image, keepdim=True) |
62
|
|
|
data = check_uint_to_int(data) |
63
|
|
|
tensor = torch.as_tensor(data) |
64
|
|
|
return tensor, affine |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
def _read_dicom(directory: TypePath): |
68
|
|
|
directory = Path(directory) |
69
|
|
|
if not directory.is_dir(): # unreachable if called from _read_sitk |
70
|
|
|
raise FileNotFoundError(f'Directory "{directory}" not found') |
71
|
|
|
reader = sitk.ImageSeriesReader() |
72
|
|
|
dicom_names = reader.GetGDCMSeriesFileNames(str(directory)) |
73
|
|
|
if not dicom_names: |
74
|
|
|
message = ( |
75
|
|
|
f'The directory "{directory}"' |
76
|
|
|
' does not seem to contain DICOM files' |
77
|
|
|
) |
78
|
|
|
raise FileNotFoundError(message) |
79
|
|
|
reader.SetFileNames(dicom_names) |
80
|
|
|
image = reader.Execute() |
81
|
|
|
return image |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def read_shape(path: TypePath) -> Tuple[int, int, int, int]: |
85
|
|
|
reader = sitk.ImageFileReader() |
86
|
|
|
reader.SetFileName(str(path)) |
87
|
|
|
reader.ReadImageInformation() |
88
|
|
|
num_channels = reader.GetNumberOfComponents() |
89
|
|
|
spatial_shape = reader.GetSize() |
90
|
|
|
num_dimensions = reader.GetDimension() |
91
|
|
|
if num_dimensions == 2: |
92
|
|
|
spatial_shape = *spatial_shape, 1 |
93
|
|
|
elif num_dimensions == 4: # assume bad NIfTI |
94
|
|
|
*spatial_shape, num_channels = spatial_shape |
95
|
|
|
shape = (num_channels,) + tuple(spatial_shape) |
96
|
|
|
return shape |
97
|
|
|
|
98
|
|
|
|
99
|
|
|
def read_affine(path: TypePath) -> np.ndarray: |
100
|
|
|
reader = get_reader(path) |
101
|
|
|
affine = get_ras_affine_from_sitk(reader) |
102
|
|
|
return affine |
103
|
|
|
|
104
|
|
|
|
105
|
|
|
def get_reader(path: TypePath, read: bool = True) -> sitk.ImageFileReader: |
106
|
|
|
reader = sitk.ImageFileReader() |
107
|
|
|
reader.SetFileName(str(path)) |
108
|
|
|
if read: |
109
|
|
|
reader.ReadImageInformation() |
110
|
|
|
return reader |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def write_image( |
114
|
|
|
tensor: torch.Tensor, |
115
|
|
|
affine: TypeData, |
116
|
|
|
path: TypePath, |
117
|
|
|
squeeze: Optional[bool] = None, |
118
|
|
|
) -> None: |
119
|
|
|
args = tensor, affine, path |
120
|
|
|
try: |
121
|
|
|
_write_sitk(*args, squeeze=squeeze) |
122
|
|
|
except RuntimeError: # try with NiBabel |
123
|
|
|
_write_nibabel(*args) |
124
|
|
|
|
125
|
|
|
|
126
|
|
|
def _write_nibabel( |
127
|
|
|
tensor: TypeData, |
128
|
|
|
affine: TypeData, |
129
|
|
|
path: TypePath, |
130
|
|
|
) -> None: |
131
|
|
|
""" |
132
|
|
|
Expects a path with an extension that can be used by nibabel.save |
133
|
|
|
to write a NIfTI-1 image, such as '.nii.gz' or '.img' |
134
|
|
|
""" |
135
|
|
|
assert tensor.ndim == 4 |
136
|
|
|
num_components = tensor.shape[0] |
137
|
|
|
|
138
|
|
|
# NIfTI components must be at the end, in a 5D array |
139
|
|
|
if num_components == 1: |
140
|
|
|
tensor = tensor[0] |
141
|
|
|
else: |
142
|
|
|
tensor = tensor[np.newaxis].permute(2, 3, 4, 0, 1) |
143
|
|
|
suffix = Path(str(path).replace('.gz', '')).suffix |
144
|
|
|
if '.nii' in suffix: |
145
|
|
|
img = nib.Nifti1Image(np.asarray(tensor), affine) |
146
|
|
|
elif '.hdr' in suffix or '.img' in suffix: |
147
|
|
|
img = nib.Nifti1Pair(np.asarray(tensor), affine) |
148
|
|
|
else: |
149
|
|
|
raise nib.loadsave.ImageFileError |
150
|
|
|
if num_components > 1: |
151
|
|
|
img.header.set_intent('vector') |
152
|
|
|
img.header['qform_code'] = 1 |
153
|
|
|
img.header['sform_code'] = 0 |
154
|
|
|
nib.save(img, str(path)) |
155
|
|
|
|
156
|
|
|
|
157
|
|
|
def _write_sitk( |
158
|
|
|
tensor: torch.Tensor, |
159
|
|
|
affine: TypeData, |
160
|
|
|
path: TypePath, |
161
|
|
|
use_compression: bool = True, |
162
|
|
|
squeeze: Optional[bool] = None, |
163
|
|
|
) -> None: |
164
|
|
|
assert tensor.ndim == 4 |
165
|
|
|
path = Path(path) |
166
|
|
|
if path.suffix in ('.png', '.jpg', '.jpeg', '.bmp'): |
167
|
|
|
warnings.warn( |
168
|
|
|
f'Casting to uint 8 before saving to {path}', |
169
|
|
|
RuntimeWarning, |
170
|
|
|
) |
171
|
|
|
tensor = tensor.numpy().astype(np.uint8) |
172
|
|
|
if squeeze is None: |
173
|
|
|
force_3d = path.suffix not in IMAGE_2D_FORMATS |
174
|
|
|
else: |
175
|
|
|
force_3d = not squeeze |
176
|
|
|
image = nib_to_sitk(tensor, affine, force_3d=force_3d) |
177
|
|
|
sitk.WriteImage(image, str(path), use_compression) |
178
|
|
|
|
179
|
|
|
|
180
|
|
|
def read_matrix(path: TypePath): |
181
|
|
|
"""Read an affine transform and convert to tensor.""" |
182
|
|
|
path = Path(path) |
183
|
|
|
suffix = path.suffix |
184
|
|
|
if suffix in ('.tfm', '.h5'): # ITK |
185
|
|
|
tensor = _read_itk_matrix(path) |
186
|
|
|
elif suffix in ('.txt', '.trsf'): # NiftyReg, blockmatching |
187
|
|
|
tensor = _read_niftyreg_matrix(path) |
188
|
|
|
else: |
189
|
|
|
raise ValueError(f'Unknown suffix for transform file: "{suffix}"') |
190
|
|
|
return tensor |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
def write_matrix(matrix: torch.Tensor, path: TypePath): |
194
|
|
|
"""Write an affine transform.""" |
195
|
|
|
path = Path(path) |
196
|
|
|
suffix = path.suffix |
197
|
|
|
if suffix in ('.tfm', '.h5'): # ITK |
198
|
|
|
_write_itk_matrix(matrix, path) |
199
|
|
|
elif suffix in ('.txt', '.trsf'): # NiftyReg, blockmatching |
200
|
|
|
_write_niftyreg_matrix(matrix, path) |
201
|
|
|
|
202
|
|
|
|
203
|
|
|
def _to_itk_convention(matrix): |
204
|
|
|
"""RAS to LPS""" |
205
|
|
|
matrix = np.dot(FLIPXY_44, matrix) |
206
|
|
|
matrix = np.dot(matrix, FLIPXY_44) |
207
|
|
|
matrix = np.linalg.inv(matrix) |
208
|
|
|
return matrix |
209
|
|
|
|
210
|
|
|
|
211
|
|
|
def _from_itk_convention(matrix): |
212
|
|
|
"""LPS to RAS""" |
213
|
|
|
matrix = np.dot(matrix, FLIPXY_44) |
214
|
|
|
matrix = np.dot(FLIPXY_44, matrix) |
215
|
|
|
matrix = np.linalg.inv(matrix) |
216
|
|
|
return matrix |
217
|
|
|
|
218
|
|
|
|
219
|
|
|
def _read_itk_matrix(path): |
220
|
|
|
"""Read an affine transform in ITK's .tfm format""" |
221
|
|
|
transform = sitk.ReadTransform(str(path)) |
222
|
|
|
parameters = transform.GetParameters() |
223
|
|
|
rotation_parameters = parameters[:9] |
224
|
|
|
rotation_matrix = np.array(rotation_parameters).reshape(3, 3) |
225
|
|
|
translation_parameters = parameters[9:] |
226
|
|
|
translation_vector = np.array(translation_parameters).reshape(3, 1) |
227
|
|
|
matrix = np.hstack([rotation_matrix, translation_vector]) |
228
|
|
|
homogeneous_matrix_lps = np.vstack([matrix, [0, 0, 0, 1]]) |
229
|
|
|
homogeneous_matrix_ras = _from_itk_convention(homogeneous_matrix_lps) |
230
|
|
|
return torch.as_tensor(homogeneous_matrix_ras) |
231
|
|
|
|
232
|
|
|
|
233
|
|
|
def _write_itk_matrix(matrix, tfm_path): |
234
|
|
|
"""The tfm file contains the matrix from floating to reference.""" |
235
|
|
|
transform = _matrix_to_itk_transform(matrix) |
236
|
|
|
transform.WriteTransform(str(tfm_path)) |
237
|
|
|
|
238
|
|
|
|
239
|
|
|
def _matrix_to_itk_transform(matrix, dimensions=3): |
240
|
|
|
matrix = _to_itk_convention(matrix) |
241
|
|
|
rotation = matrix[:dimensions, :dimensions].ravel().tolist() |
242
|
|
|
translation = matrix[:dimensions, 3].tolist() |
243
|
|
|
transform = sitk.AffineTransform(rotation, translation) |
244
|
|
|
return transform |
245
|
|
|
|
246
|
|
|
|
247
|
|
|
def _read_niftyreg_matrix(trsf_path): |
248
|
|
|
"""Read a NiftyReg matrix and return it as a NumPy array""" |
249
|
|
|
matrix = np.loadtxt(trsf_path) |
250
|
|
|
matrix = np.linalg.inv(matrix) |
251
|
|
|
return torch.as_tensor(matrix) |
252
|
|
|
|
253
|
|
|
|
254
|
|
|
def _write_niftyreg_matrix(matrix, txt_path): |
255
|
|
|
"""Write an affine transform in NiftyReg's .txt format (ref -> flo)""" |
256
|
|
|
matrix = np.linalg.inv(matrix) |
257
|
|
|
np.savetxt(txt_path, matrix, fmt='%.8f') |
258
|
|
|
|
259
|
|
|
|
260
|
|
|
def get_rotation_and_spacing_from_affine( |
261
|
|
|
affine: np.ndarray, |
262
|
|
|
) -> Tuple[np.ndarray, np.ndarray]: |
263
|
|
|
# From https://github.com/nipy/nibabel/blob/master/nibabel/orientations.py |
264
|
|
|
rotation_zoom = affine[:3, :3] |
265
|
|
|
spacing = np.sqrt(np.sum(rotation_zoom * rotation_zoom, axis=0)) |
266
|
|
|
rotation = rotation_zoom / spacing |
267
|
|
|
return rotation, spacing |
268
|
|
|
|
269
|
|
|
|
270
|
|
|
def nib_to_sitk( |
271
|
|
|
data: TypeData, |
272
|
|
|
affine: TypeData, |
273
|
|
|
force_3d: bool = False, |
274
|
|
|
force_4d: bool = False, |
275
|
|
|
) -> sitk.Image: |
276
|
|
|
"""Create a SimpleITK image from a tensor and a 4x4 affine matrix.""" |
277
|
|
|
if data.ndim != 4: |
278
|
|
|
shape = tuple(data.shape) |
279
|
|
|
raise ValueError(f'Input must be 4D, but has shape {shape}') |
280
|
|
|
# Possibilities |
281
|
|
|
# (1, w, h, 1) |
282
|
|
|
# (c, w, h, 1) |
283
|
|
|
# (1, w, h, 1) |
284
|
|
|
# (c, w, h, d) |
285
|
|
|
array = np.asarray(data) |
286
|
|
|
affine = np.asarray(affine).astype(np.float64) |
287
|
|
|
|
288
|
|
|
is_multichannel = array.shape[0] > 1 and not force_4d |
289
|
|
|
is_2d = array.shape[3] == 1 and not force_3d |
290
|
|
|
if is_2d: |
291
|
|
|
array = array[..., 0] |
292
|
|
|
if not is_multichannel and not force_4d: |
293
|
|
|
array = array[0] |
294
|
|
|
array = array.transpose() # (W, H, D, C) or (W, H, D) |
295
|
|
|
image = sitk.GetImageFromArray(array, isVector=is_multichannel) |
296
|
|
|
|
297
|
|
|
origin, spacing, direction = get_sitk_metadata_from_ras_affine( |
298
|
|
|
affine, |
299
|
|
|
is_2d=is_2d, |
300
|
|
|
) |
301
|
|
|
image.SetOrigin(origin) # should I add a 4th value if force_4d? |
302
|
|
|
image.SetSpacing(spacing) |
303
|
|
|
image.SetDirection(direction) |
304
|
|
|
|
305
|
|
|
if data.ndim == 4: |
306
|
|
|
assert image.GetNumberOfComponentsPerPixel() == data.shape[0] |
307
|
|
|
num_spatial_dims = 2 if is_2d else 3 |
308
|
|
|
assert image.GetSize() == data.shape[1:1 + num_spatial_dims] |
309
|
|
|
|
310
|
|
|
return image |
311
|
|
|
|
312
|
|
|
|
313
|
|
|
def sitk_to_nib( |
314
|
|
|
image: sitk.Image, |
315
|
|
|
keepdim: bool = False, |
316
|
|
|
) -> Tuple[np.ndarray, np.ndarray]: |
317
|
|
|
data = sitk.GetArrayFromImage(image).transpose() |
318
|
|
|
data = check_uint_to_int(data) |
319
|
|
|
num_components = image.GetNumberOfComponentsPerPixel() |
320
|
|
|
if num_components == 1: |
321
|
|
|
data = data[np.newaxis] # add channels dimension |
322
|
|
|
input_spatial_dims = image.GetDimension() |
323
|
|
|
if input_spatial_dims == 2: |
324
|
|
|
data = data[..., np.newaxis] |
325
|
|
|
elif input_spatial_dims == 4: # probably a bad NIfTI (1, sx, sy, sz, c) |
326
|
|
|
# Try to fix it |
327
|
|
|
num_components = data.shape[-1] |
328
|
|
|
data = data[0] |
329
|
|
|
data = data.transpose(3, 0, 1, 2) |
330
|
|
|
input_spatial_dims = 3 |
331
|
|
|
if not keepdim: |
332
|
|
|
data = ensure_4d(data, num_spatial_dims=input_spatial_dims) |
333
|
|
|
assert data.shape[0] == num_components |
334
|
|
|
affine = get_ras_affine_from_sitk(image) |
335
|
|
|
return data, affine |
336
|
|
|
|
337
|
|
|
|
338
|
|
|
def get_ras_affine_from_sitk( |
339
|
|
|
sitk_object: Union[sitk.Image, sitk.ImageFileReader], |
340
|
|
|
) -> np.ndarray: |
341
|
|
|
spacing = np.array(sitk_object.GetSpacing()) |
342
|
|
|
direction_lps = np.array(sitk_object.GetDirection()) |
343
|
|
|
origin_lps = np.array(sitk_object.GetOrigin()) |
344
|
|
|
direction_length = len(direction_lps) |
345
|
|
|
if direction_length == 9: |
346
|
|
|
rotation_lps = direction_lps.reshape(3, 3) |
347
|
|
|
elif direction_length == 4: # ignore last dimension if 2D (1, W, H, 1) |
348
|
|
|
rotation_lps_2d = direction_lps.reshape(2, 2) |
349
|
|
|
rotation_lps = np.eye(3) |
350
|
|
|
rotation_lps[:2, :2] = rotation_lps_2d |
351
|
|
|
spacing = np.append(spacing, 1) |
352
|
|
|
origin_lps = np.append(origin_lps, 0) |
353
|
|
|
elif direction_length == 16: # probably a bad NIfTI. Let's try to fix it |
354
|
|
|
rotation_lps = direction_lps.reshape(4, 4)[:3, :3] |
355
|
|
|
spacing = spacing[:-1] |
356
|
|
|
origin_lps = origin_lps[:-1] |
357
|
|
|
rotation_ras = np.dot(FLIPXY_33, rotation_lps) |
|
|
|
|
358
|
|
|
rotation_ras_zoom = rotation_ras * spacing |
359
|
|
|
translation_ras = np.dot(FLIPXY_33, origin_lps) |
360
|
|
|
affine = np.eye(4) |
361
|
|
|
affine[:3, :3] = rotation_ras_zoom |
362
|
|
|
affine[:3, 3] = translation_ras |
363
|
|
|
return affine |
364
|
|
|
|
365
|
|
|
|
366
|
|
|
def get_sitk_metadata_from_ras_affine( |
367
|
|
|
affine: np.ndarray, |
368
|
|
|
is_2d: bool = False, |
369
|
|
|
lps: bool = True, |
370
|
|
|
) -> Tuple[TypeTripletFloat, TypeTripletFloat, TypeDirection]: |
371
|
|
|
direction_ras, spacing_array = get_rotation_and_spacing_from_affine(affine) |
372
|
|
|
origin_ras = affine[:3, 3] |
373
|
|
|
origin_lps = np.dot(FLIPXY_33, origin_ras) |
374
|
|
|
direction_lps = np.dot(FLIPXY_33, direction_ras) |
375
|
|
|
if is_2d: # ignore orientation if 2D (1, W, H, 1) |
376
|
|
|
direction_lps = np.diag((-1, -1)).astype(np.float64) |
377
|
|
|
direction_ras = np.diag((1, 1)).astype(np.float64) |
378
|
|
|
origin_array = origin_lps if lps else origin_ras |
379
|
|
|
direction_array = direction_lps if lps else direction_ras |
380
|
|
|
direction_array = direction_array.flatten() |
381
|
|
|
# The following are to comply with typing hints |
382
|
|
|
# (there must be prettier ways to do this) |
383
|
|
|
ox, oy, oz = origin_array |
384
|
|
|
sx, sy, sz = spacing_array |
385
|
|
|
if is_2d: |
386
|
|
|
d1, d2, d3, d4 = direction_array |
387
|
|
|
direction = d1, d2, d3, d4 |
388
|
|
|
else: |
389
|
|
|
d1, d2, d3, d4, d5, d6, d7, d8, d9 = direction_array |
390
|
|
|
direction = d1, d2, d3, d4, d5, d6, d7, d8, d9 |
391
|
|
|
origin = ox, oy, oz |
392
|
|
|
spacing = sx, sy, sz |
393
|
|
|
return origin, spacing, direction |
394
|
|
|
|
395
|
|
|
|
396
|
|
|
def ensure_4d(tensor: TypeData, num_spatial_dims=None) -> TypeData: |
397
|
|
|
# I wish named tensors were properly supported in PyTorch |
398
|
|
|
tensor = torch.as_tensor(tensor) |
399
|
|
|
num_dimensions = tensor.ndim |
400
|
|
|
if num_dimensions == 4: |
401
|
|
|
pass |
402
|
|
|
elif num_dimensions == 5: # hope (W, H, D, 1, C) |
403
|
|
|
if tensor.shape[-2] == 1: |
404
|
|
|
tensor = tensor[..., 0, :] |
405
|
|
|
tensor = tensor.permute(3, 0, 1, 2) |
406
|
|
|
else: |
407
|
|
|
raise ValueError('5D is not supported for shape[-2] > 1') |
408
|
|
|
elif num_dimensions == 2: # assume 2D monochannel (W, H) |
409
|
|
|
tensor = tensor[np.newaxis, ..., np.newaxis] # (1, W, H, 1) |
410
|
|
|
elif num_dimensions == 3: # 2D multichannel or 3D monochannel? |
411
|
|
|
if num_spatial_dims == 2: |
412
|
|
|
tensor = tensor[..., np.newaxis] # (C, W, H, 1) |
413
|
|
|
elif num_spatial_dims == 3: # (W, H, D) |
414
|
|
|
tensor = tensor[np.newaxis] # (1, W, H, D) |
415
|
|
|
else: # try to guess |
416
|
|
|
shape = tensor.shape |
417
|
|
|
maybe_rgb = 3 in (shape[0], shape[-1]) |
418
|
|
|
if maybe_rgb: |
419
|
|
|
if shape[-1] == 3: # (W, H, 3) |
420
|
|
|
tensor = tensor.permute(2, 0, 1) # (3, W, H) |
421
|
|
|
tensor = tensor[..., np.newaxis] # (3, W, H, 1) |
422
|
|
|
else: # (W, H, D) |
423
|
|
|
tensor = tensor[np.newaxis] # (1, W, H, D) |
424
|
|
|
else: |
425
|
|
|
message = ( |
426
|
|
|
f'{num_dimensions}D images not supported yet. Please create an' |
427
|
|
|
f' issue in {REPO_URL} if you would like support for them' |
428
|
|
|
) |
429
|
|
|
raise ValueError(message) |
430
|
|
|
assert tensor.ndim == 4 |
431
|
|
|
return tensor |
432
|
|
|
|
433
|
|
|
|
434
|
|
|
def check_uint_to_int(array): |
435
|
|
|
# This is because PyTorch won't take uint16 nor uint32 |
436
|
|
|
if array.dtype == np.uint16: |
437
|
|
|
return array.astype(np.int32) |
438
|
|
|
if array.dtype == np.uint32: |
439
|
|
|
return array.astype(np.int64) |
440
|
|
|
return array |
441
|
|
|
|