1
|
|
|
import os |
2
|
|
|
import copy |
3
|
|
|
import shutil |
4
|
|
|
import random |
5
|
|
|
import tempfile |
6
|
|
|
import unittest |
7
|
|
|
from pathlib import Path |
8
|
|
|
from random import shuffle |
9
|
|
|
|
10
|
|
|
import torch |
11
|
|
|
import numpy as np |
12
|
|
|
from numpy.testing import assert_array_equal, assert_array_almost_equal |
13
|
|
|
import torchio as tio |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class TorchioTestCase(unittest.TestCase): |
17
|
|
|
|
18
|
|
|
def setUp(self): |
19
|
|
|
"""Set up test fixtures, if any.""" |
20
|
|
|
self.dir = Path(tempfile.gettempdir()) / os.urandom(24).hex() |
21
|
|
|
self.dir.mkdir(exist_ok=True) |
22
|
|
|
random.seed(42) |
23
|
|
|
np.random.seed(42) |
24
|
|
|
|
25
|
|
|
registration_matrix = np.array([ |
26
|
|
|
[1, 0, 0, 10], |
27
|
|
|
[0, 1, 0, 0], |
28
|
|
|
[0, 0, 1.2, 0], |
29
|
|
|
[0, 0, 0, 1] |
30
|
|
|
]) |
31
|
|
|
|
32
|
|
|
subject_a = tio.Subject( |
33
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_a')), |
34
|
|
|
) |
35
|
|
|
subject_b = tio.Subject( |
36
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_b')), |
37
|
|
|
label=tio.LabelMap(self.get_image_path('label_b', binary=True)), |
38
|
|
|
) |
39
|
|
|
subject_c = tio.Subject( |
40
|
|
|
label=tio.LabelMap(self.get_image_path('label_c', binary=True)), |
41
|
|
|
) |
42
|
|
|
subject_d = tio.Subject( |
43
|
|
|
t1=tio.ScalarImage( |
44
|
|
|
self.get_image_path('t1_d'), |
45
|
|
|
pre_affine=registration_matrix, |
46
|
|
|
), |
47
|
|
|
t2=tio.ScalarImage(self.get_image_path('t2_d')), |
48
|
|
|
label=tio.LabelMap(self.get_image_path('label_d', binary=True)), |
49
|
|
|
) |
50
|
|
|
subject_a4 = tio.Subject( |
51
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_a'), components=2), |
52
|
|
|
) |
53
|
|
|
self.subjects_list = [ |
54
|
|
|
subject_a, |
55
|
|
|
subject_a4, |
56
|
|
|
subject_b, |
57
|
|
|
subject_c, |
58
|
|
|
subject_d, |
59
|
|
|
] |
60
|
|
|
self.dataset = tio.SubjectsDataset(self.subjects_list) |
61
|
|
|
self.sample_subject = self.dataset[-1] # subject_d |
62
|
|
|
|
63
|
|
|
def make_2d(self, subject): |
64
|
|
|
subject = copy.deepcopy(subject) |
65
|
|
|
for image in subject.get_images(intensity_only=False): |
66
|
|
|
image.set_data(image.data[..., :1]) |
67
|
|
|
return subject |
68
|
|
|
|
69
|
|
|
def make_multichannel(self, subject): |
70
|
|
|
subject = copy.deepcopy(subject) |
71
|
|
|
for image in subject.get_images(intensity_only=False): |
72
|
|
|
image.set_data(torch.cat(4 * (image.data,))) |
73
|
|
|
return subject |
74
|
|
|
|
75
|
|
|
def flip_affine_x(self, subject): |
76
|
|
|
subject = copy.deepcopy(subject) |
77
|
|
|
for image in subject.get_images(intensity_only=False): |
78
|
|
|
image.affine = np.diag((-1, 1, 1, 1)) @ image.affine |
79
|
|
|
return subject |
80
|
|
|
|
81
|
|
|
def get_inconsistent_shape_subject(self): |
82
|
|
|
"""Return a subject containing images of different shape.""" |
83
|
|
|
subject = tio.Subject( |
84
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_inc')), |
85
|
|
|
t2=tio.ScalarImage( |
86
|
|
|
self.get_image_path('t2_inc', shape=(10, 20, 31))), |
87
|
|
|
label=tio.LabelMap( |
88
|
|
|
self.get_image_path( |
89
|
|
|
'label_inc', |
90
|
|
|
shape=(8, 17, 25), |
91
|
|
|
binary=True, |
92
|
|
|
), |
93
|
|
|
), |
94
|
|
|
label2=tio.LabelMap( |
95
|
|
|
self.get_image_path( |
96
|
|
|
'label2_inc', |
97
|
|
|
shape=(18, 17, 25), |
98
|
|
|
binary=True, |
99
|
|
|
), |
100
|
|
|
), |
101
|
|
|
) |
102
|
|
|
return subject |
103
|
|
|
|
104
|
|
|
def get_reference_image_and_path(self): |
105
|
|
|
"""Return a reference image and its path""" |
106
|
|
|
path = self.get_image_path( |
107
|
|
|
'ref', |
108
|
|
|
shape=(10, 20, 31), |
109
|
|
|
spacing=(1, 1, 2), |
110
|
|
|
) |
111
|
|
|
image = tio.ScalarImage(path) |
112
|
|
|
return image, path |
113
|
|
|
|
114
|
|
|
def get_subject_with_partial_volume_label_map(self, components=1): |
115
|
|
|
"""Return a subject with a partial-volume label map.""" |
116
|
|
|
return tio.Subject( |
117
|
|
|
t1=tio.ScalarImage( |
118
|
|
|
self.get_image_path('t1_d'), |
119
|
|
|
), |
120
|
|
|
label=tio.LabelMap( |
121
|
|
|
self.get_image_path( |
122
|
|
|
'label_d2', binary=False, components=components |
123
|
|
|
) |
124
|
|
|
), |
125
|
|
|
) |
126
|
|
|
|
127
|
|
|
def get_subject_with_labels(self, labels): |
128
|
|
|
return tio.Subject( |
129
|
|
|
label=tio.LabelMap( |
130
|
|
|
self.get_image_path( |
131
|
|
|
'label_multi', labels=labels |
132
|
|
|
) |
133
|
|
|
) |
134
|
|
|
) |
135
|
|
|
|
136
|
|
|
def get_unique_labels(self, label_map): |
137
|
|
|
labels = torch.unique(label_map.data) |
138
|
|
|
labels = {i.item() for i in labels if i != 0} |
139
|
|
|
return labels |
140
|
|
|
|
141
|
|
|
def tearDown(self): |
142
|
|
|
"""Tear down test fixtures, if any.""" |
143
|
|
|
shutil.rmtree(self.dir) |
144
|
|
|
|
145
|
|
|
def get_ixi_tiny(self): |
146
|
|
|
root_dir = Path(tempfile.gettempdir()) / 'torchio' / 'ixi_tiny' |
147
|
|
|
return tio.datasets.IXITiny(root_dir, download=True) |
148
|
|
|
|
149
|
|
|
def get_image_path( |
150
|
|
|
self, |
151
|
|
|
stem, |
152
|
|
|
binary=False, |
153
|
|
|
labels=None, |
154
|
|
|
shape=(10, 20, 30), |
155
|
|
|
spacing=(1, 1, 1), |
156
|
|
|
components=1, |
157
|
|
|
add_nans=False, |
158
|
|
|
suffix=None, |
159
|
|
|
force_binary_foreground=True, |
160
|
|
|
): |
161
|
|
|
shape = (*shape, 1) if len(shape) == 2 else shape |
162
|
|
|
data = np.random.rand(components, *shape) |
163
|
|
|
if binary: |
164
|
|
|
data = (data > 0.5).astype(np.uint8) |
165
|
|
|
if not data.sum() and force_binary_foreground: |
166
|
|
|
data[..., 0] = 1 |
167
|
|
|
elif labels is not None: |
168
|
|
|
data = (data * (len(labels) + 1)).astype(np.uint8) |
169
|
|
|
new_data = np.zeros_like(data) |
170
|
|
|
for i, label in enumerate(labels): |
171
|
|
|
new_data[data == (i + 1)] = label |
172
|
|
|
if not (new_data == label).sum(): |
173
|
|
|
new_data[..., i] = label |
174
|
|
|
data = new_data |
175
|
|
|
elif self.flip_coin(): # cast some images |
176
|
|
|
data *= 100 |
177
|
|
|
dtype = np.uint8 if self.flip_coin() else np.uint16 |
178
|
|
|
data = data.astype(dtype) |
179
|
|
|
if add_nans: |
180
|
|
|
data[:] = np.nan |
181
|
|
|
affine = np.diag((*spacing, 1)) |
182
|
|
|
if suffix is None: |
183
|
|
|
extensions = '.nii.gz', '.nii', '.nrrd', '.img', '.mnc' |
184
|
|
|
suffix = random.choice(extensions) |
185
|
|
|
path = self.dir / f'{stem}{suffix}' |
186
|
|
|
if self.flip_coin(): |
187
|
|
|
path = str(path) |
188
|
|
|
image = tio.ScalarImage( |
189
|
|
|
tensor=data, |
190
|
|
|
affine=affine, |
191
|
|
|
check_nans=not add_nans, |
192
|
|
|
) |
193
|
|
|
image.save(path) |
194
|
|
|
return path |
195
|
|
|
|
196
|
|
|
def flip_coin(self): |
197
|
|
|
return np.random.rand() > 0.5 |
198
|
|
|
|
199
|
|
|
def get_tests_data_dir(self): |
200
|
|
|
return Path(__file__).parent / 'image_data' |
201
|
|
|
|
202
|
|
|
def assertTensorNotEqual(self, *args, **kwargs): # noqa: N802 |
203
|
|
|
message_kwarg = {'msg': args[2]} if len(args) == 3 else {} |
204
|
|
|
with self.assertRaises(AssertionError, **message_kwarg): |
205
|
|
|
self.assertTensorEqual(*args, **kwargs) |
206
|
|
|
|
207
|
|
|
@staticmethod |
208
|
|
|
def assertTensorEqual(*args, **kwargs): # noqa: N802 |
209
|
|
|
assert_array_equal(*args, **kwargs) |
210
|
|
|
|
211
|
|
|
@staticmethod |
212
|
|
|
def assertTensorAlmostEqual(*args, **kwargs): # noqa: N802 |
213
|
|
|
assert_array_almost_equal(*args, **kwargs) |
214
|
|
|
|
215
|
|
|
def get_large_composed_transform(self): |
216
|
|
|
all_classes = get_all_random_transforms() |
217
|
|
|
shuffle(all_classes) |
218
|
|
|
transforms = [t() for t in all_classes] |
219
|
|
|
# Hack as default patch size for RandomSwap is 15 and sample_subject |
220
|
|
|
# is (10, 20, 30) |
221
|
|
|
for tr in transforms: |
222
|
|
|
if tr.name == 'RandomSwap': |
223
|
|
|
tr.patch_size = np.array((10, 10, 10)) |
224
|
|
|
return tio.Compose(transforms) |
225
|
|
|
|
226
|
|
|
|
227
|
|
|
def get_all_random_transforms(): |
228
|
|
|
transforms_names = [ |
229
|
|
|
name |
230
|
|
|
for name in dir(tio.transforms) |
231
|
|
|
if name.startswith('Random') |
232
|
|
|
] |
233
|
|
|
classes = [getattr(tio.transforms, name) for name in transforms_names] |
234
|
|
|
return classes |
235
|
|
|
|