| Conditions | 8 | 
| Total Lines | 73 | 
| Code Lines | 56 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | # -*- coding: utf-8 -*- | ||
| 10 | def _update_countries_data(): | ||
| 11 | # https://www.anagrafenazionale.interno.it/il-progetto/strumenti-di-lavoro/tabelle-decodifica/ | ||
| 12 | data_url = "https://www.anagrafenazionale.interno.it/wp-content/uploads/2021/03/tabella_2_statiesteri.xlsx" | ||
| 13 | data_path = fsutil.download_file(data_url, __file__, filename="countries.xlsx") | ||
| 14 | |||
| 15 | workbook = load_workbook(filename=data_path, read_only=True) | ||
| 16 | sheet = workbook.active | ||
| 17 | |||
| 18 | items = [] | ||
| 19 | keys = [] | ||
| 20 | for row in sheet.iter_rows(min_row=1, max_row=1): | ||
| 21 | keys = [cell.value for cell in row] | ||
| 22 | for row in sheet.iter_rows(min_row=2): | ||
| 23 | values = list([cell.value for cell in row]) | ||
| 24 | items.append(dict(zip(keys, values))) | ||
| 25 | |||
| 26 | workbook.close() | ||
| 27 | fsutil.remove_file(data_path) | ||
| 28 | |||
| 29 |     data = benedict({"values": items}) | ||
| 30 | data.standardize() | ||
| 31 | # print(data.dump()) | ||
| 32 | |||
| 33 | def map_item(item): | ||
| 34 | if not item: | ||
| 35 | return None | ||
| 36 |         code = item.get_str("codat").upper() | ||
| 37 | if not code: | ||
| 38 | return None | ||
| 39 |         assert len(code) == 4, f"Invalid code: '{code}'" | ||
| 40 | |||
| 41 |         name = item.get_str("denominazione").title() | ||
| 42 |         assert name != "", f"Invalid name: '{name}'" | ||
| 43 |         name_alt = item.get_str("denominazioneistat").title() | ||
| 44 |         name_alt_en = item.get_str("denominazioneistat_en").title() | ||
| 45 | name_slugs = sorted( | ||
| 46 | set( | ||
| 47 | filter( | ||
| 48 | bool, | ||
| 49 | [ | ||
| 50 | slugify(name), | ||
| 51 | slugify(name_alt), | ||
| 52 | slugify(name_alt_en), | ||
| 53 | ], | ||
| 54 | ) | ||
| 55 | ) | ||
| 56 | ) | ||
| 57 | province = "EE" | ||
| 58 | |||
| 59 |         date_created = item.get_str("datainiziovalidita") | ||
| 60 |         date_deleted = item.get_str("datafinevalidita") | ||
| 61 | if "9999" in date_deleted: | ||
| 62 | date_deleted = "" | ||
| 63 | |||
| 64 |         return { | ||
| 65 | "active": False if date_deleted else True, | ||
| 66 | "code": code, | ||
| 67 | "date_created": date_created, | ||
| 68 | "date_deleted": date_deleted, | ||
| 69 | "name": name, | ||
| 70 | "name_alt": name_alt, | ||
| 71 | "name_alt_en": name_alt_en, | ||
| 72 | "name_slugs": name_slugs, | ||
| 73 | "province": province, | ||
| 74 | } | ||
| 75 | |||
| 76 | output_data = list( | ||
| 77 | filter(bool, [map_item(benedict(item)) for item in data["values"]]) | ||
| 78 | ) | ||
| 79 | output_data = sorted(output_data, key=lambda item: item["name"]) | ||
| 80 | output_path = "../codicefiscale/data/countries.json" | ||
| 81 | output_abspath = fsutil.join_path(__file__, output_path) | ||
| 82 | fsutil.write_file_json(output_abspath, output_data, indent=4, sort_keys=True) | ||
| 83 | |||
| 156 |