Conditions | 8 |
Total Lines | 73 |
Code Lines | 56 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # -*- coding: utf-8 -*- |
||
10 | def _update_countries_data(): |
||
11 | # https://www.anagrafenazionale.interno.it/il-progetto/strumenti-di-lavoro/tabelle-decodifica/ |
||
12 | data_url = "https://www.anagrafenazionale.interno.it/wp-content/uploads/2021/03/tabella_2_statiesteri.xlsx" |
||
13 | data_path = fsutil.download_file(data_url, __file__, filename="countries.xlsx") |
||
14 | |||
15 | workbook = load_workbook(filename=data_path, read_only=True) |
||
16 | sheet = workbook.active |
||
17 | |||
18 | items = [] |
||
19 | keys = [] |
||
20 | for row in sheet.iter_rows(min_row=1, max_row=1): |
||
21 | keys = [cell.value for cell in row] |
||
22 | for row in sheet.iter_rows(min_row=2): |
||
23 | values = list([cell.value for cell in row]) |
||
24 | items.append(dict(zip(keys, values))) |
||
25 | |||
26 | workbook.close() |
||
27 | fsutil.remove_file(data_path) |
||
28 | |||
29 | data = benedict({"values": items}) |
||
30 | data.standardize() |
||
31 | # print(data.dump()) |
||
32 | |||
33 | def map_item(item): |
||
34 | if not item: |
||
35 | return None |
||
36 | code = item.get_str("codat").upper() |
||
37 | if not code: |
||
38 | return None |
||
39 | assert len(code) == 4, f"Invalid code: '{code}'" |
||
40 | |||
41 | name = item.get_str("denominazione").title() |
||
42 | assert name != "", f"Invalid name: '{name}'" |
||
43 | name_alt = item.get_str("denominazioneistat").title() |
||
44 | name_alt_en = item.get_str("denominazioneistat_en").title() |
||
45 | name_slugs = sorted( |
||
46 | set( |
||
47 | filter( |
||
48 | bool, |
||
49 | [ |
||
50 | slugify(name), |
||
51 | slugify(name_alt), |
||
52 | slugify(name_alt_en), |
||
53 | ], |
||
54 | ) |
||
55 | ) |
||
56 | ) |
||
57 | province = "EE" |
||
58 | |||
59 | date_created = item.get_str("datainiziovalidita") |
||
60 | date_deleted = item.get_str("datafinevalidita") |
||
61 | if "9999" in date_deleted: |
||
62 | date_deleted = "" |
||
63 | |||
64 | return { |
||
65 | "active": False if date_deleted else True, |
||
66 | "code": code, |
||
67 | "date_created": date_created, |
||
68 | "date_deleted": date_deleted, |
||
69 | "name": name, |
||
70 | "name_alt": name_alt, |
||
71 | "name_alt_en": name_alt_en, |
||
72 | "name_slugs": name_slugs, |
||
73 | "province": province, |
||
74 | } |
||
75 | |||
76 | output_data = list( |
||
77 | filter(bool, [map_item(benedict(item)) for item in data["values"]]) |
||
78 | ) |
||
79 | output_data = sorted(output_data, key=lambda item: item["name"]) |
||
80 | output_path = "../codicefiscale/data/countries.json" |
||
81 | output_abspath = fsutil.join_path(__file__, output_path) |
||
82 | fsutil.write_file_json(output_abspath, output_data, indent=4, sort_keys=True) |
||
83 | |||
156 |