1
|
|
|
import fsutil |
2
|
|
|
from openpyxl import load_workbook |
3
|
|
|
from slugify import slugify |
4
|
|
|
from xlrd import open_workbook |
5
|
|
|
|
6
|
|
|
from benedict.serializers.abstract import AbstractSerializer |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class XLSSerializer(AbstractSerializer): |
10
|
|
|
""" |
11
|
|
|
This class describes a xls serializer. |
12
|
|
|
""" |
13
|
|
|
|
14
|
|
|
def __init__(self): |
15
|
|
|
super().__init__( |
16
|
|
|
extensions=[ |
17
|
|
|
"xls", |
18
|
|
|
"xlsx", |
19
|
|
|
"xlsm", |
20
|
|
|
], |
21
|
|
|
) |
22
|
|
|
|
23
|
|
|
def _get_sheet_index_and_name_from_options(self, **kwargs): |
24
|
|
|
sheet_index_or_name = kwargs.pop("sheet", 0) |
25
|
|
|
sheet_index = 0 |
26
|
|
|
sheet_name = "" |
27
|
|
|
if isinstance(sheet_index_or_name, int): |
28
|
|
|
sheet_index = sheet_index_or_name |
29
|
|
|
elif isinstance(sheet_index_or_name, str): |
30
|
|
|
sheet_name = sheet_index_or_name |
31
|
|
|
return (sheet_index, sheet_name) |
32
|
|
|
|
33
|
|
|
def _get_sheet_index_by_name(self, sheet_name, sheet_names): |
34
|
|
|
sheet_names = list([slugify(name) for name in sheet_names]) |
35
|
|
|
try: |
36
|
|
|
sheet_index = sheet_names.index(slugify(sheet_name)) |
37
|
|
|
return sheet_index |
38
|
|
|
except ValueError: |
39
|
|
|
raise Exception(f"Invalid sheet name '{sheet_name}', sheet not found.") |
40
|
|
|
|
41
|
|
|
def _get_sheet_columns_indexes(self, columns_count): |
42
|
|
|
return [column_index for column_index in range(columns_count)] |
43
|
|
|
|
44
|
|
|
def _decode_legacy(self, s, **kwargs): |
45
|
|
|
filepath = s |
46
|
|
|
|
47
|
|
|
# load the worksheet |
48
|
|
|
workbook = open_workbook(filename=filepath) |
49
|
|
|
|
50
|
|
|
# get sheet by index or by name |
51
|
|
|
sheet_index, sheet_name = self._get_sheet_index_and_name_from_options(**kwargs) |
52
|
|
|
if sheet_name: |
53
|
|
|
sheet_names = workbook.sheet_names() |
54
|
|
|
sheet_index = self._get_sheet_index_by_name(sheet_name, sheet_names) |
55
|
|
|
sheet = workbook.sheet_by_index(sheet_index) |
56
|
|
|
sheet_columns_range = range(sheet.ncols) |
57
|
|
|
|
58
|
|
|
# get columns |
59
|
|
|
columns = kwargs.pop("columns", None) |
60
|
|
|
columns_row = kwargs.pop("columns_row", True) |
61
|
|
|
columns_standardized = kwargs.pop("columns_standardized", columns is None) |
62
|
|
|
if not columns: |
63
|
|
|
if columns_row: |
64
|
|
|
# if first row is for column names read the names |
65
|
|
|
# for row in sheet.iter_rows(min_row=1, max_row=1): |
66
|
|
|
columns = [ |
67
|
|
|
sheet.cell_value(0, col_index) for col_index in sheet_columns_range |
68
|
|
|
] |
69
|
|
|
else: |
70
|
|
|
# otherwise use columns indexes as column names |
71
|
|
|
# for row in sheet.iter_rows(min_row=1, max_row=1): |
72
|
|
|
columns = self._get_sheet_columns_indexes(sheet_columns_range) |
73
|
|
|
|
74
|
|
|
# standardize column names, eg. "Date Created" -> "date_created" |
75
|
|
|
if columns_standardized: |
76
|
|
|
columns = [slugify(column, separator="_") for column in columns] |
77
|
|
|
|
78
|
|
|
# build list of dicts, one for each row |
79
|
|
|
items = [] |
80
|
|
|
items_row_start = 1 if columns_row else 0 |
81
|
|
|
for row_index in range(items_row_start, sheet.nrows): |
82
|
|
|
row = {} |
83
|
|
|
for col_index in sheet_columns_range: |
84
|
|
|
col_key = columns[col_index] |
85
|
|
|
value = sheet.cell_value(row_index, col_index) |
86
|
|
|
row[col_key] = value |
87
|
|
|
items.append(row) |
88
|
|
|
|
89
|
|
|
# print(items) |
90
|
|
|
return items |
91
|
|
|
|
92
|
|
|
def _decode(self, s, **kwargs): |
93
|
|
|
filepath = s |
94
|
|
|
|
95
|
|
|
# load the worksheet |
96
|
|
|
workbook = load_workbook(filename=filepath, read_only=True) |
97
|
|
|
|
98
|
|
|
# get sheet by index or by name |
99
|
|
|
sheet_index, sheet_name = self._get_sheet_index_and_name_from_options(**kwargs) |
100
|
|
|
sheets = [sheet for sheet in workbook] |
101
|
|
|
if sheet_name: |
102
|
|
|
sheet_names = [sheet.title for sheet in sheets] |
103
|
|
|
sheet_index = self._get_sheet_index_by_name(sheet_name, sheet_names) |
104
|
|
|
sheet = sheets[sheet_index] |
105
|
|
|
sheet_columns_cells = list(sheet.iter_rows(min_row=1, max_row=1))[0] |
106
|
|
|
|
107
|
|
|
# get columns |
108
|
|
|
columns = kwargs.pop("columns", None) |
109
|
|
|
columns_row = kwargs.pop("columns_row", True) |
110
|
|
|
columns_standardized = kwargs.pop("columns_standardized", columns is None) |
111
|
|
|
if not columns: |
112
|
|
|
if columns_row: |
113
|
|
|
# if first row is for column names read the names |
114
|
|
|
# for row in sheet.iter_rows(min_row=1, max_row=1): |
115
|
|
|
columns = [cell.value for cell in sheet_columns_cells] |
116
|
|
|
else: |
117
|
|
|
# otherwise use columns indexes as column names |
118
|
|
|
# for row in sheet.iter_rows(min_row=1, max_row=1): |
119
|
|
|
columns = self._get_sheet_columns_indexes(len(sheet_columns_cells)) |
120
|
|
|
|
121
|
|
|
# standardize column names, eg. "Date Created" -> "date_created" |
122
|
|
|
if columns_standardized: |
123
|
|
|
columns = [slugify(column, separator="_") for column in columns] |
124
|
|
|
|
125
|
|
|
# build list of dicts, one for each row |
126
|
|
|
items = [] |
127
|
|
|
items_row_start = 2 if columns_row else 1 |
128
|
|
|
for row in sheet.iter_rows(min_row=items_row_start): |
129
|
|
|
values = list([cell.value for cell in row]) |
130
|
|
|
items.append(dict(zip(columns, values))) |
131
|
|
|
|
132
|
|
|
# close the worksheet |
133
|
|
|
workbook.close() |
134
|
|
|
|
135
|
|
|
# print(items) |
136
|
|
|
return items |
137
|
|
|
|
138
|
|
|
def decode(self, s, **kwargs): |
139
|
|
|
extension = fsutil.get_file_extension(s) |
140
|
|
|
if extension in ["xlsx", "xlsm"]: |
141
|
|
|
return self._decode(s, **kwargs) |
142
|
|
|
elif extension in ["xls", "xlt"]: |
143
|
|
|
return self._decode_legacy(s, **kwargs) |
144
|
|
|
|
145
|
|
|
def encode(self, d, **kwargs): |
146
|
|
|
raise NotImplementedError |
147
|
|
|
|