|
1
|
|
|
import itertools |
|
2
|
|
|
import re |
|
3
|
|
|
from collections.abc import Iterable |
|
4
|
|
|
from typing import NewType |
|
5
|
|
|
|
|
6
|
|
|
import networkx as nx |
|
7
|
|
|
|
|
8
|
|
|
SPECIAL_GRAPHS_ADJACENCY_LISTS = { |
|
9
|
|
|
'Buckyball - Truncated Icosahedral Graph': { |
|
10
|
|
|
1: [2, 3, 4], |
|
11
|
|
|
2: [1, 55, 56], |
|
12
|
|
|
3: [1, 58, 60], |
|
13
|
|
|
4: [1, 57, 59], |
|
14
|
|
|
5: [8, 13, 14], |
|
15
|
|
|
6: [8, 12, 15], |
|
16
|
|
|
7: [8, 11, 16], |
|
17
|
|
|
8: [5, 6, 7], |
|
18
|
|
|
9: [13, 15, 25], |
|
19
|
|
|
10: [14, 16, 26], |
|
20
|
|
|
11: [7, 12, 24], |
|
21
|
|
|
12: [6, 11, 23], |
|
22
|
|
|
13: [5, 9, 18], |
|
23
|
|
|
14: [5, 10, 17], |
|
24
|
|
|
15: [6, 9, 19], |
|
25
|
|
|
16: [7, 10, 20], |
|
26
|
|
|
17: [14, 18, 30], |
|
27
|
|
|
18: [13, 17, 29], |
|
28
|
|
|
19: [15, 28, 32], |
|
29
|
|
|
20: [16, 27, 31], |
|
30
|
|
|
21: [26, 30, 46], |
|
31
|
|
|
22: [25, 29, 45], |
|
32
|
|
|
23: [12, 28, 38], |
|
33
|
|
|
24: [11, 27, 37], |
|
34
|
|
|
25: [9, 22, 32], |
|
35
|
|
|
26: [10, 21, 31], |
|
36
|
|
|
27: [20, 24, 35], |
|
37
|
|
|
28: [19, 23, 36], |
|
38
|
|
|
29: [18, 22, 43], |
|
39
|
|
|
30: [17, 21, 44], |
|
40
|
|
|
31: [20, 26, 42], |
|
41
|
|
|
32: [19, 25, 41], |
|
42
|
|
|
33: [35, 42, 53], |
|
43
|
|
|
34: [36, 41, 54], |
|
44
|
|
|
35: [27, 33, 40], |
|
45
|
|
|
36: [28, 34, 39], |
|
46
|
|
|
37: [24, 38, 40], |
|
47
|
|
|
38: [23, 37, 39], |
|
48
|
|
|
39: [36, 38, 52], |
|
49
|
|
|
40: [35, 37, 51], |
|
50
|
|
|
41: [32, 34, 50], |
|
51
|
|
|
42: [31, 33, 49], |
|
52
|
|
|
43: [29, 44, 48], |
|
53
|
|
|
44: [30, 43, 47], |
|
54
|
|
|
45: [22, 48, 50], |
|
55
|
|
|
46: [21, 47, 49], |
|
56
|
|
|
47: [44, 46, 60], |
|
57
|
|
|
48: [43, 45, 59], |
|
58
|
|
|
49: [42, 46, 58], |
|
59
|
|
|
50: [41, 45, 57], |
|
60
|
|
|
51: [40, 52, 56], |
|
61
|
|
|
52: [39, 51, 55], |
|
62
|
|
|
53: [33, 56, 58], |
|
63
|
|
|
54: [34, 55, 57], |
|
64
|
|
|
55: [2, 52, 54], |
|
65
|
|
|
56: [2, 51, 53], |
|
66
|
|
|
57: [4, 50, 54], |
|
67
|
|
|
58: [3, 49, 53], |
|
68
|
|
|
59: [4, 48, 60], |
|
69
|
|
|
60: [3, 47, 59] |
|
70
|
|
|
}, |
|
71
|
|
|
'D30 - Rhombic Triacontahedral Graph': { |
|
72
|
|
|
1: [21, 22, 23], |
|
73
|
|
|
2: [24, 27, 30], |
|
74
|
|
|
3: [24, 29, 30], |
|
75
|
|
|
4: [26, 29, 32], |
|
76
|
|
|
5: [26, 28, 32], |
|
77
|
|
|
6: [25, 27, 31], |
|
78
|
|
|
7: [25, 28, 31], |
|
79
|
|
|
8: [24, 26, 29], |
|
80
|
|
|
9: [24, 25, 27], |
|
81
|
|
|
10: [25, 26, 28], |
|
82
|
|
|
11: [24, 25, 26], |
|
83
|
|
|
12: [22, 29, 30], |
|
84
|
|
|
13: [21, 27, 30], |
|
85
|
|
|
14: [23, 28, 32], |
|
86
|
|
|
15: [23, 28, 31], |
|
87
|
|
|
16: [22, 29, 32], |
|
88
|
|
|
17: [21, 27, 31], |
|
89
|
|
|
18: [21, 22, 30], |
|
90
|
|
|
19: [22, 23, 32], |
|
91
|
|
|
20: [21, 23, 31], |
|
92
|
|
|
21: [1, 13, 17, 18, 20], |
|
93
|
|
|
22: [1, 12, 16, 18, 19], |
|
94
|
|
|
23: [1, 14, 15, 19, 20], |
|
95
|
|
|
24: [2, 3, 8, 9, 11], |
|
96
|
|
|
25: [6, 7, 9, 10, 11], |
|
97
|
|
|
26: [4, 5, 8, 10, 11], |
|
98
|
|
|
27: [2, 6, 9, 13, 17], |
|
99
|
|
|
28: [5, 7, 10, 14, 15], |
|
100
|
|
|
29: [3, 4, 8, 12, 16], |
|
101
|
|
|
30: [2, 3, 12, 13, 18], |
|
102
|
|
|
31: [6, 7, 15, 17, 20], |
|
103
|
|
|
32: [4, 5, 14, 16, 19] |
|
104
|
|
|
}, |
|
105
|
|
|
'Small Rhombicosidodecahedral Graph': { |
|
106
|
|
|
1: [2, 3, 4, 5], |
|
107
|
|
|
2: [1, 54, 55, 59], |
|
108
|
|
|
3: [1, 53, 56, 60], |
|
109
|
|
|
4: [1, 5, 58, 60], |
|
110
|
|
|
5: [1, 4, 57, 59], |
|
111
|
|
|
6: [24, 25, 57, 58], |
|
112
|
|
|
7: [12, 13, 16, 17], |
|
113
|
|
|
8: [9, 11, 19, 25], |
|
114
|
|
|
9: [8, 10, 18, 24], |
|
115
|
|
|
10: [9, 11, 12, 18], |
|
116
|
|
|
11: [8, 10, 13, 19], |
|
117
|
|
|
12: [7, 10, 14, 20], |
|
118
|
|
|
13: [7, 11, 15, 21], |
|
119
|
|
|
14: [12, 18, 20, 37], |
|
120
|
|
|
15: [13, 19, 21, 38], |
|
121
|
|
|
16: [7, 17, 21, 23], |
|
122
|
|
|
17: [7, 16, 20, 22], |
|
123
|
|
|
18: [9, 10, 14, 28], |
|
124
|
|
|
19: [8, 11, 15, 29], |
|
125
|
|
|
20: [12, 14, 17, 33], |
|
126
|
|
|
21: [13, 15, 16, 32], |
|
127
|
|
|
22: [17, 23, 31, 34], |
|
128
|
|
|
23: [16, 22, 30, 34], |
|
129
|
|
|
24: [6, 9, 27, 28], |
|
130
|
|
|
25: [6, 8, 26, 29], |
|
131
|
|
|
26: [25, 29, 46, 58], |
|
132
|
|
|
27: [24, 28, 45, 57], |
|
133
|
|
|
28: [18, 24, 27, 44], |
|
134
|
|
|
29: [19, 25, 26, 43], |
|
135
|
|
|
30: [23, 32, 36, 42], |
|
136
|
|
|
31: [22, 33, 35, 41], |
|
137
|
|
|
32: [21, 30, 38, 39], |
|
138
|
|
|
33: [20, 31, 37, 40], |
|
139
|
|
|
34: [22, 23, 41, 42], |
|
140
|
|
|
35: [31, 40, 41, 51], |
|
141
|
|
|
36: [30, 39, 42, 52], |
|
142
|
|
|
37: [14, 33, 40, 44], |
|
143
|
|
|
38: [15, 32, 39, 43], |
|
144
|
|
|
39: [32, 36, 38, 48], |
|
145
|
|
|
40: [33, 35, 37, 47], |
|
146
|
|
|
41: [31, 34, 35, 50], |
|
147
|
|
|
42: [30, 34, 36, 49], |
|
148
|
|
|
43: [29, 38, 46, 48], |
|
149
|
|
|
44: [28, 37, 45, 47], |
|
150
|
|
|
45: [27, 44, 47, 59], |
|
151
|
|
|
46: [26, 43, 48, 60], |
|
152
|
|
|
47: [40, 44, 45, 54], |
|
153
|
|
|
48: [39, 43, 46, 53], |
|
154
|
|
|
49: [42, 50, 52, 56], |
|
155
|
|
|
50: [41, 49, 51, 55], |
|
156
|
|
|
51: [35, 50, 54, 55], |
|
157
|
|
|
52: [36, 49, 53, 56], |
|
158
|
|
|
53: [3, 48, 52, 60], |
|
159
|
|
|
54: [2, 47, 51, 59], |
|
160
|
|
|
55: [2, 50, 51, 56], |
|
161
|
|
|
56: [3, 49, 52, 55], |
|
162
|
|
|
57: [5, 6, 27, 58], |
|
163
|
|
|
58: [4, 6, 26, 57], |
|
164
|
|
|
59: [2, 5, 45, 54], |
|
165
|
|
|
60: [3, 4, 46, 53] |
|
166
|
|
|
}, |
|
167
|
|
|
'Small Rhombicuboctahedral Graph': { |
|
168
|
|
|
1: [2, 3, 4, 5], |
|
169
|
|
|
2: [1, 18, 22, 24], |
|
170
|
|
|
3: [1, 19, 22, 23], |
|
171
|
|
|
4: [1, 5, 21, 24], |
|
172
|
|
|
5: [1, 4, 20, 23], |
|
173
|
|
|
6: [10, 11, 20, 21], |
|
174
|
|
|
7: [10, 11, 12, 13], |
|
175
|
|
|
8: [10, 14, 20, 23], |
|
176
|
|
|
9: [11, 15, 21, 24], |
|
177
|
|
|
10: [6, 7, 8, 14], |
|
178
|
|
|
11: [6, 7, 9, 15], |
|
179
|
|
|
12: [7, 13, 15, 17], |
|
180
|
|
|
13: [7, 12, 14, 16], |
|
181
|
|
|
14: [8, 10, 13, 19], |
|
182
|
|
|
15: [9, 11, 12, 18], |
|
183
|
|
|
16: [13, 17, 19, 22], |
|
184
|
|
|
17: [12, 16, 18, 22], |
|
185
|
|
|
18: [2, 15, 17, 24], |
|
186
|
|
|
19: [3, 14, 16, 23], |
|
187
|
|
|
20: [5, 6, 8, 21], |
|
188
|
|
|
21: [4, 6, 9, 20], |
|
189
|
|
|
22: [2, 3, 16, 17], |
|
190
|
|
|
23: [3, 5, 8, 19], |
|
191
|
|
|
24: [2, 4, 9, 18] |
|
192
|
|
|
}, |
|
193
|
|
|
'Great Rhombicosidodecahedral Graph': { |
|
194
|
|
|
1: [2, 3, 4], |
|
195
|
|
|
2: [1, 119, 120], |
|
196
|
|
|
3: [1, 118, 120], |
|
197
|
|
|
4: [1, 116, 117], |
|
198
|
|
|
5: [6, 7, 120], |
|
199
|
|
|
6: [5, 114, 115], |
|
200
|
|
|
7: [5, 113, 115], |
|
201
|
|
|
8: [9, 10, 115], |
|
202
|
|
|
9: [8, 111, 112], |
|
203
|
|
|
10: [8, 110, 112], |
|
204
|
|
|
11: [12, 13, 112], |
|
205
|
|
|
12: [11, 108, 109], |
|
206
|
|
|
13: [11, 107, 109], |
|
207
|
|
|
14: [15, 16, 109], |
|
208
|
|
|
15: [14, 105, 106], |
|
209
|
|
|
16: [14, 104, 106], |
|
210
|
|
|
17: [18, 19, 106], |
|
211
|
|
|
18: [17, 102, 103], |
|
212
|
|
|
19: [17, 101, 103], |
|
213
|
|
|
20: [21, 22, 103], |
|
214
|
|
|
21: [20, 99, 100], |
|
215
|
|
|
22: [20, 98, 100], |
|
216
|
|
|
23: [24, 25, 100], |
|
217
|
|
|
24: [23, 96, 97], |
|
218
|
|
|
25: [23, 95, 97], |
|
219
|
|
|
26: [27, 28, 97], |
|
220
|
|
|
27: [26, 93, 94], |
|
221
|
|
|
28: [26, 92, 94], |
|
222
|
|
|
29: [94, 116, 117], |
|
223
|
|
|
30: [63, 91, 96], |
|
224
|
|
|
31: [32, 33, 91], |
|
225
|
|
|
32: [31, 87, 88], |
|
226
|
|
|
33: [31, 86, 88], |
|
227
|
|
|
34: [35, 36, 88], |
|
228
|
|
|
35: [34, 84, 85], |
|
229
|
|
|
36: [34, 83, 85], |
|
230
|
|
|
37: [38, 85, 113], |
|
231
|
|
|
38: [37, 41, 110], |
|
232
|
|
|
39: [58, 73, 114], |
|
233
|
|
|
40: [86, 117, 119], |
|
234
|
|
|
41: [38, 64, 84], |
|
235
|
|
|
42: [64, 69, 84], |
|
236
|
|
|
43: [53, 55, 111], |
|
237
|
|
|
44: [64, 67, 108], |
|
238
|
|
|
45: [52, 77, 105], |
|
239
|
|
|
46: [65, 70, 102], |
|
240
|
|
|
47: [48, 49, 99], |
|
241
|
|
|
48: [47, 82, 95], |
|
242
|
|
|
49: [47, 80, 81], |
|
243
|
|
|
50: [51, 52, 79], |
|
244
|
|
|
51: [50, 74, 75], |
|
245
|
|
|
52: [45, 50, 75], |
|
246
|
|
|
53: [43, 75, 107], |
|
247
|
|
|
54: [72, 73, 74], |
|
248
|
|
|
55: [43, 73, 74], |
|
249
|
|
|
56: [61, 76, 78], |
|
250
|
|
|
57: [60, 89, 90], |
|
251
|
|
|
58: [39, 59, 118], |
|
252
|
|
|
59: [58, 60, 72], |
|
253
|
|
|
60: [57, 59, 61], |
|
254
|
|
|
61: [56, 60, 72], |
|
255
|
|
|
62: [66, 71, 87], |
|
256
|
|
|
63: [30, 66, 87], |
|
257
|
|
|
64: [41, 42, 44], |
|
258
|
|
|
65: [46, 66, 98], |
|
259
|
|
|
66: [62, 63, 65], |
|
260
|
|
|
67: [44, 68, 104], |
|
261
|
|
|
68: [67, 69, 70], |
|
262
|
|
|
69: [42, 68, 71], |
|
263
|
|
|
70: [46, 68, 71], |
|
264
|
|
|
71: [62, 69, 70], |
|
265
|
|
|
72: [54, 59, 61], |
|
266
|
|
|
73: [39, 54, 55], |
|
267
|
|
|
74: [51, 54, 55], |
|
268
|
|
|
75: [51, 52, 53], |
|
269
|
|
|
76: [56, 82, 89], |
|
270
|
|
|
77: [45, 80, 101], |
|
271
|
|
|
78: [56, 81, 82], |
|
272
|
|
|
79: [50, 80, 81], |
|
273
|
|
|
80: [49, 77, 79], |
|
274
|
|
|
81: [49, 78, 79], |
|
275
|
|
|
82: [48, 76, 78], |
|
276
|
|
|
83: [36, 86, 119], |
|
277
|
|
|
84: [35, 41, 42], |
|
278
|
|
|
85: [35, 36, 37], |
|
279
|
|
|
86: [33, 40, 83], |
|
280
|
|
|
87: [32, 62, 63], |
|
281
|
|
|
88: [32, 33, 34], |
|
282
|
|
|
89: [57, 76, 93], |
|
283
|
|
|
90: [57, 93, 116], |
|
284
|
|
|
91: [30, 31, 92], |
|
285
|
|
|
92: [28, 91, 96], |
|
286
|
|
|
93: [27, 89, 90], |
|
287
|
|
|
94: [27, 28, 29], |
|
288
|
|
|
95: [25, 48, 99], |
|
289
|
|
|
96: [24, 30, 92], |
|
290
|
|
|
97: [24, 25, 26], |
|
291
|
|
|
98: [22, 65, 102], |
|
292
|
|
|
99: [21, 47, 95], |
|
293
|
|
|
100: [21, 22, 23], |
|
294
|
|
|
101: [19, 77, 105], |
|
295
|
|
|
102: [18, 46, 98], |
|
296
|
|
|
103: [18, 19, 20], |
|
297
|
|
|
104: [16, 67, 108], |
|
298
|
|
|
105: [15, 45, 101], |
|
299
|
|
|
106: [15, 16, 17], |
|
300
|
|
|
107: [13, 53, 111], |
|
301
|
|
|
108: [12, 44, 104], |
|
302
|
|
|
109: [12, 13, 14], |
|
303
|
|
|
110: [10, 38, 113], |
|
304
|
|
|
111: [9, 43, 107], |
|
305
|
|
|
112: [9, 10, 11], |
|
306
|
|
|
113: [7, 37, 110], |
|
307
|
|
|
114: [6, 39, 118], |
|
308
|
|
|
115: [6, 7, 8], |
|
309
|
|
|
116: [4, 29, 90], |
|
310
|
|
|
117: [4, 29, 40], |
|
311
|
|
|
118: [3, 58, 114], |
|
312
|
|
|
119: [2, 40, 83], |
|
313
|
|
|
120: [2, 3, 5] |
|
314
|
|
|
}, |
|
315
|
|
|
'Disdyakis Dodecahedral Graph': { |
|
316
|
|
|
1: [13, 14, 21, 22], |
|
317
|
|
|
2: [17, 19, 21, 23], |
|
318
|
|
|
3: [18, 20, 22, 24], |
|
319
|
|
|
4: [16, 17, 23, 25], |
|
320
|
|
|
5: [15, 19, 23, 26], |
|
321
|
|
|
6: [15, 18, 24, 26], |
|
322
|
|
|
7: [16, 20, 24, 25], |
|
323
|
|
|
8: [15, 16, 23, 24], |
|
324
|
|
|
9: [14, 17, 21, 25], |
|
325
|
|
|
10: [13, 18, 22, 26], |
|
326
|
|
|
11: [13, 19, 21, 26], |
|
327
|
|
|
12: [14, 20, 22, 25], |
|
328
|
|
|
13: [1, 10, 11, 21, 22, 26], |
|
329
|
|
|
14: [1, 9, 12, 21, 22, 25], |
|
330
|
|
|
15: [5, 6, 8, 23, 24, 26], |
|
331
|
|
|
16: [4, 7, 8, 23, 24, 25], |
|
332
|
|
|
17: [2, 4, 9, 21, 23, 25], |
|
333
|
|
|
18: [3, 6, 10, 22, 24, 26], |
|
334
|
|
|
19: [2, 5, 11, 21, 23, 26], |
|
335
|
|
|
20: [3, 7, 12, 22, 24, 25], |
|
336
|
|
|
21: [1, 2, 9, 11, 13, 14, 17, 19], |
|
337
|
|
|
22: [1, 3, 10, 12, 13, 14, 18, 20], |
|
338
|
|
|
23: [2, 4, 5, 8, 15, 16, 17, 19], |
|
339
|
|
|
24: [3, 6, 7, 8, 15, 16, 18, 20], |
|
340
|
|
|
25: [4, 7, 9, 12, 14, 16, 17, 20], |
|
341
|
|
|
26: [5, 6, 10, 11, 13, 15, 18, 19] |
|
342
|
|
|
}, |
|
343
|
|
|
'Deltoidal Icositetrahedral Graph': { |
|
344
|
|
|
1: [15, 24, 26], |
|
345
|
|
|
2: [15, 23, 25], |
|
346
|
|
|
3: [16, 18, 20], |
|
347
|
|
|
4: [17, 19, 20], |
|
348
|
|
|
5: [16, 22, 26], |
|
349
|
|
|
6: [19, 22, 25], |
|
350
|
|
|
7: [18, 21, 24], |
|
351
|
|
|
8: [17, 21, 23], |
|
352
|
|
|
9: [15, 22, 25, 26], |
|
353
|
|
|
10: [15, 21, 23, 24], |
|
354
|
|
|
11: [16, 18, 24, 26], |
|
355
|
|
|
12: [17, 19, 23, 25], |
|
356
|
|
|
13: [16, 19, 20, 22], |
|
357
|
|
|
14: [17, 18, 20, 21], |
|
358
|
|
|
15: [1, 2, 9, 10], |
|
359
|
|
|
16: [3, 5, 11, 13], |
|
360
|
|
|
17: [4, 8, 12, 14], |
|
361
|
|
|
18: [3, 7, 11, 14], |
|
362
|
|
|
19: [4, 6, 12, 13], |
|
363
|
|
|
20: [3, 4, 13, 14], |
|
364
|
|
|
21: [7, 8, 10, 14], |
|
365
|
|
|
22: [5, 6, 9, 13], |
|
366
|
|
|
23: [2, 8, 10, 12], |
|
367
|
|
|
24: [1, 7, 10, 11], |
|
368
|
|
|
25: [2, 6, 9, 12], |
|
369
|
|
|
26: [1, 5, 9, 11] |
|
370
|
|
|
}, |
|
371
|
|
|
'Icosidodecahedral Graph': { |
|
372
|
|
|
1: [2, 3, 4, 5], |
|
373
|
|
|
2: [1, 4, 23, 27], |
|
374
|
|
|
3: [1, 5, 24, 28], |
|
375
|
|
|
4: [1, 2, 26, 29], |
|
376
|
|
|
5: [1, 3, 25, 30], |
|
377
|
|
|
6: [7, 8, 9, 10], |
|
378
|
|
|
7: [6, 9, 11, 15], |
|
379
|
|
|
8: [6, 10, 12, 16], |
|
380
|
|
|
9: [6, 7, 14, 18], |
|
381
|
|
|
10: [6, 8, 13, 17], |
|
382
|
|
|
11: [7, 12, 15, 19], |
|
383
|
|
|
12: [8, 11, 16, 19], |
|
384
|
|
|
13: [10, 14, 17, 20], |
|
385
|
|
|
14: [9, 13, 18, 20], |
|
386
|
|
|
15: [7, 11, 21, 23], |
|
387
|
|
|
16: [8, 12, 22, 24], |
|
388
|
|
|
17: [10, 13, 22, 25], |
|
389
|
|
|
18: [9, 14, 21, 26], |
|
390
|
|
|
19: [11, 12, 27, 28], |
|
391
|
|
|
20: [13, 14, 29, 30], |
|
392
|
|
|
21: [15, 18, 23, 26], |
|
393
|
|
|
22: [16, 17, 24, 25], |
|
394
|
|
|
23: [2, 15, 21, 27], |
|
395
|
|
|
24: [3, 16, 22, 28], |
|
396
|
|
|
25: [5, 17, 22, 30], |
|
397
|
|
|
26: [4, 18, 21, 29], |
|
398
|
|
|
27: [2, 19, 23, 28], |
|
399
|
|
|
28: [3, 19, 24, 27], |
|
400
|
|
|
29: [4, 20, 26, 30], |
|
401
|
|
|
30: [5, 20, 25, 29] |
|
402
|
|
|
}, |
|
403
|
|
|
'Deltoidal Hexecontahedral Graph': { |
|
404
|
|
|
1: [21, 49, 50], |
|
405
|
|
|
2: [21, 47, 48], |
|
406
|
|
|
3: [23, 25, 26], |
|
407
|
|
|
4: [22, 24, 26], |
|
408
|
|
|
5: [25, 27, 33], |
|
409
|
|
|
6: [24, 30, 36], |
|
410
|
|
|
7: [23, 28, 34], |
|
411
|
|
|
8: [22, 29, 35], |
|
412
|
|
|
9: [27, 30, 31], |
|
413
|
|
|
10: [28, 29, 32], |
|
414
|
|
|
11: [33, 38, 43], |
|
415
|
|
|
12: [34, 38, 46], |
|
416
|
|
|
13: [36, 37, 45], |
|
417
|
|
|
14: [35, 37, 44], |
|
418
|
|
|
15: [32, 40, 42], |
|
419
|
|
|
16: [31, 39, 41], |
|
420
|
|
|
17: [39, 43, 49], |
|
421
|
|
|
18: [40, 46, 50], |
|
422
|
|
|
19: [41, 45, 47], |
|
423
|
|
|
20: [42, 44, 48], |
|
424
|
|
|
21: [1, 2, 51, 52], |
|
425
|
|
|
22: [4, 8, 54, 56], |
|
426
|
|
|
23: [3, 7, 53, 56], |
|
427
|
|
|
24: [4, 6, 54, 55], |
|
428
|
|
|
25: [3, 5, 53, 55], |
|
429
|
|
|
26: [3, 4, 55, 56], |
|
430
|
|
|
27: [5, 9, 55, 57], |
|
431
|
|
|
28: [7, 10, 56, 58], |
|
432
|
|
|
29: [8, 10, 56, 60], |
|
433
|
|
|
30: [6, 9, 55, 59], |
|
434
|
|
|
31: [9, 16, 57, 59], |
|
435
|
|
|
32: [10, 15, 58, 60], |
|
436
|
|
|
33: [5, 11, 53, 57], |
|
437
|
|
|
34: [7, 12, 53, 58], |
|
438
|
|
|
35: [8, 14, 54, 60], |
|
439
|
|
|
36: [6, 13, 54, 59], |
|
440
|
|
|
37: [13, 14, 54, 62], |
|
441
|
|
|
38: [11, 12, 53, 61], |
|
442
|
|
|
39: [16, 17, 52, 57], |
|
443
|
|
|
40: [15, 18, 51, 58], |
|
444
|
|
|
41: [16, 19, 52, 59], |
|
445
|
|
|
42: [15, 20, 51, 60], |
|
446
|
|
|
43: [11, 17, 57, 61], |
|
447
|
|
|
44: [14, 20, 60, 62], |
|
448
|
|
|
45: [13, 19, 59, 62], |
|
449
|
|
|
46: [12, 18, 58, 61], |
|
450
|
|
|
47: [2, 19, 52, 62], |
|
451
|
|
|
48: [2, 20, 51, 62], |
|
452
|
|
|
49: [1, 17, 52, 61], |
|
453
|
|
|
50: [1, 18, 51, 61], |
|
454
|
|
|
51: [21, 40, 42, 48, 50], |
|
455
|
|
|
52: [21, 39, 41, 47, 49], |
|
456
|
|
|
53: [23, 25, 33, 34, 38], |
|
457
|
|
|
54: [22, 24, 35, 36, 37], |
|
458
|
|
|
55: [24, 25, 26, 27, 30], |
|
459
|
|
|
56: [22, 23, 26, 28, 29], |
|
460
|
|
|
57: [27, 31, 33, 39, 43], |
|
461
|
|
|
58: [28, 32, 34, 40, 46], |
|
462
|
|
|
59: [30, 31, 36, 41, 45], |
|
463
|
|
|
60: [29, 32, 35, 42, 44], |
|
464
|
|
|
61: [38, 43, 46, 49, 50], |
|
465
|
|
|
62: [37, 44, 45, 47, 48] |
|
466
|
|
|
}, |
|
467
|
|
|
'Kocohl74': { |
|
468
|
|
|
1: [2, 3, 4], |
|
469
|
|
|
2: [1, 71, 74], |
|
470
|
|
|
3: [1, 72, 73], |
|
471
|
|
|
4: [1, 69, 70], |
|
472
|
|
|
5: [6, 43, 60], |
|
473
|
|
|
6: [5, 7, 50], |
|
474
|
|
|
7: [6, 8, 9], |
|
475
|
|
|
8: [7, 39, 40], |
|
476
|
|
|
9: [7, 41, 42], |
|
477
|
|
|
10: [11, 12, 31], |
|
478
|
|
|
11: [10, 21, 25], |
|
479
|
|
|
12: [10, 20, 22], |
|
480
|
|
|
13: [15, 18, 24], |
|
481
|
|
|
14: [15, 44, 47], |
|
482
|
|
|
15: [13, 14, 45], |
|
483
|
|
|
16: [17, 46, 47], |
|
484
|
|
|
17: [16, 18, 21], |
|
485
|
|
|
18: [13, 17, 22], |
|
486
|
|
|
19: [20, 21, 23], |
|
487
|
|
|
20: [12, 19, 24], |
|
488
|
|
|
21: [11, 17, 19], |
|
489
|
|
|
22: [12, 18, 23], |
|
490
|
|
|
23: [19, 22, 28], |
|
491
|
|
|
24: [13, 20, 26], |
|
492
|
|
|
25: [11, 26, 27], |
|
493
|
|
|
26: [24, 25, 35], |
|
494
|
|
|
27: [25, 30, 37], |
|
495
|
|
|
28: [23, 29, 35], |
|
496
|
|
|
29: [28, 30, 34], |
|
497
|
|
|
30: [27, 29, 33], |
|
498
|
|
|
31: [10, 33, 34], |
|
499
|
|
|
32: [40, 46, 48], |
|
500
|
|
|
33: [30, 31, 42], |
|
501
|
|
|
34: [29, 31, 41], |
|
502
|
|
|
35: [26, 28, 42], |
|
503
|
|
|
36: [38, 39, 43], |
|
504
|
|
|
37: [27, 38, 41], |
|
505
|
|
|
38: [36, 37, 40], |
|
506
|
|
|
39: [8, 36, 49], |
|
507
|
|
|
40: [8, 32, 38], |
|
508
|
|
|
41: [9, 34, 37], |
|
509
|
|
|
42: [9, 33, 35], |
|
510
|
|
|
43: [5, 36, 54], |
|
511
|
|
|
44: [14, 49, 52], |
|
512
|
|
|
45: [15, 48, 52], |
|
513
|
|
|
46: [16, 32, 56], |
|
514
|
|
|
47: [14, 16, 51], |
|
515
|
|
|
48: [32, 45, 57], |
|
516
|
|
|
49: [39, 44, 51], |
|
517
|
|
|
50: [6, 55, 58], |
|
518
|
|
|
51: [47, 49, 66], |
|
519
|
|
|
52: [44, 45, 65], |
|
520
|
|
|
53: [58, 63, 67], |
|
521
|
|
|
54: [43, 59, 63], |
|
522
|
|
|
55: [50, 59, 62], |
|
523
|
|
|
56: [46, 57, 66], |
|
524
|
|
|
57: [48, 56, 65], |
|
525
|
|
|
58: [50, 53, 61], |
|
526
|
|
|
59: [54, 55, 64], |
|
527
|
|
|
60: [5, 62, 64], |
|
528
|
|
|
61: [58, 68, 71], |
|
529
|
|
|
62: [55, 60, 72], |
|
530
|
|
|
63: [53, 54, 72], |
|
531
|
|
|
64: [59, 60, 71], |
|
532
|
|
|
65: [52, 57, 70], |
|
533
|
|
|
66: [51, 56, 69], |
|
534
|
|
|
67: [53, 70, 74], |
|
535
|
|
|
68: [61, 69, 73], |
|
536
|
|
|
69: [4, 66, 68], |
|
537
|
|
|
70: [4, 65, 67], |
|
538
|
|
|
71: [2, 61, 64], |
|
539
|
|
|
72: [3, 62, 63], |
|
540
|
|
|
73: [3, 68, 74], |
|
541
|
|
|
74: [2, 67, 73] |
|
542
|
|
|
}, |
|
543
|
|
|
'https://houseofgraphs.org/graphs/3312': { |
|
544
|
|
|
1: [2, 3, 4], |
|
545
|
|
|
2: [1, 87, 88], |
|
546
|
|
|
3: [1, 85, 88], |
|
547
|
|
|
4: [1, 84, 86], |
|
548
|
|
|
5: [6, 7, 88], |
|
549
|
|
|
6: [5, 83, 87], |
|
550
|
|
|
7: [5, 81, 82], |
|
551
|
|
|
8: [83, 84, 86], |
|
552
|
|
|
9: [10, 11, 83], |
|
553
|
|
|
10: [9, 80, 86], |
|
554
|
|
|
11: [9, 79, 82], |
|
555
|
|
|
12: [28, 29, 80], |
|
556
|
|
|
13: [28, 45, 80], |
|
557
|
|
|
14: [16, 19, 81], |
|
558
|
|
|
15: [19, 78, 81], |
|
559
|
|
|
16: [14, 17, 82], |
|
560
|
|
|
17: [16, 18, 79], |
|
561
|
|
|
18: [17, 19, 20], |
|
562
|
|
|
19: [14, 15, 18], |
|
563
|
|
|
20: [18, 77, 78], |
|
564
|
|
|
21: [22, 23, 76], |
|
565
|
|
|
22: [21, 72, 75], |
|
566
|
|
|
23: [21, 73, 74], |
|
567
|
|
|
24: [25, 34, 85], |
|
568
|
|
|
25: [24, 26, 27], |
|
569
|
|
|
26: [25, 33, 38], |
|
570
|
|
|
27: [25, 32, 34], |
|
571
|
|
|
28: [12, 13, 31], |
|
572
|
|
|
29: [12, 30, 37], |
|
573
|
|
|
30: [29, 31, 36], |
|
574
|
|
|
31: [28, 30, 39], |
|
575
|
|
|
32: [27, 33, 40], |
|
576
|
|
|
33: [26, 32, 35], |
|
577
|
|
|
34: [24, 27, 43], |
|
578
|
|
|
35: [33, 38, 44], |
|
579
|
|
|
36: [30, 37, 42], |
|
580
|
|
|
37: [29, 36, 41], |
|
581
|
|
|
38: [26, 35, 41], |
|
582
|
|
|
39: [31, 42, 45], |
|
583
|
|
|
40: [32, 43, 44], |
|
584
|
|
|
41: [37, 38, 47], |
|
585
|
|
|
42: [36, 39, 47], |
|
586
|
|
|
43: [34, 40, 46], |
|
587
|
|
|
44: [35, 40, 50], |
|
588
|
|
|
45: [13, 39, 51], |
|
589
|
|
|
46: [43, 65, 85], |
|
590
|
|
|
47: [41, 42, 64], |
|
591
|
|
|
48: [53, 57, 63], |
|
592
|
|
|
49: [52, 56, 60], |
|
593
|
|
|
50: [44, 52, 61], |
|
594
|
|
|
51: [45, 53, 62], |
|
595
|
|
|
52: [49, 50, 65], |
|
596
|
|
|
53: [48, 51, 64], |
|
597
|
|
|
54: [59, 63, 71], |
|
598
|
|
|
55: [58, 60, 70], |
|
599
|
|
|
56: [49, 58, 61], |
|
600
|
|
|
57: [48, 59, 62], |
|
601
|
|
|
58: [55, 56, 67], |
|
602
|
|
|
59: [54, 57, 69], |
|
603
|
|
|
60: [49, 55, 66], |
|
604
|
|
|
61: [50, 56, 67], |
|
605
|
|
|
62: [51, 57, 69], |
|
606
|
|
|
63: [48, 54, 68], |
|
607
|
|
|
64: [47, 53, 68], |
|
608
|
|
|
65: [46, 52, 66], |
|
609
|
|
|
66: [60, 65, 72], |
|
610
|
|
|
67: [58, 61, 75], |
|
611
|
|
|
68: [63, 64, 74], |
|
612
|
|
|
69: [59, 62, 73], |
|
613
|
|
|
70: [55, 72, 75], |
|
614
|
|
|
71: [54, 73, 74], |
|
615
|
|
|
72: [22, 66, 70], |
|
616
|
|
|
73: [23, 69, 71], |
|
617
|
|
|
74: [23, 68, 71], |
|
618
|
|
|
75: [22, 67, 70], |
|
619
|
|
|
76: [21, 77, 78], |
|
620
|
|
|
77: [20, 76, 79], |
|
621
|
|
|
78: [15, 20, 76], |
|
622
|
|
|
79: [11, 17, 77], |
|
623
|
|
|
80: [10, 12, 13], |
|
624
|
|
|
81: [7, 14, 15], |
|
625
|
|
|
82: [7, 11, 16], |
|
626
|
|
|
83: [6, 8, 9], |
|
627
|
|
|
84: [4, 8, 87], |
|
628
|
|
|
85: [3, 24, 46], |
|
629
|
|
|
86: [4, 8, 10], |
|
630
|
|
|
87: [2, 6, 84], |
|
631
|
|
|
88: [2, 3, 5] |
|
632
|
|
|
}, |
|
633
|
|
|
'https://houseofgraphs.org/graphs/31104': { |
|
634
|
|
|
1: [2, 3, 4, 5], |
|
635
|
|
|
2: [1, 4, 9, 10], |
|
636
|
|
|
3: [1, 5, 8, 10], |
|
637
|
|
|
4: [1, 2, 6, 8], |
|
638
|
|
|
5: [1, 3, 7, 9], |
|
639
|
|
|
6: [4, 7, 8, 10], |
|
640
|
|
|
7: [5, 6, 9, 10], |
|
641
|
|
|
8: [3, 4, 6, 9], |
|
642
|
|
|
9: [2, 5, 7, 8], |
|
643
|
|
|
10: [2, 3, 6, 7] |
|
644
|
|
|
}, |
|
645
|
|
|
'Utility Graph': { |
|
646
|
|
|
1: [2, 3, 4], |
|
647
|
|
|
2: [1, 5, 6], |
|
648
|
|
|
3: [1, 5, 6], |
|
649
|
|
|
4: [1, 5, 6], |
|
650
|
|
|
5: [2, 3, 4], |
|
651
|
|
|
6: [2, 3, 4] |
|
652
|
|
|
}, |
|
653
|
|
|
'Errara Graph': { |
|
654
|
|
|
1: [3, 4, 5, 11, 12], |
|
655
|
|
|
2: [6, 7, 8, 9, 10], |
|
656
|
|
|
3: [1, 4, 5, 13, 14], |
|
657
|
|
|
4: [1, 3, 11, 13, 16], |
|
658
|
|
|
5: [1, 3, 12, 14, 17], |
|
659
|
|
|
6: [2, 7, 8, 15, 16], |
|
660
|
|
|
7: [2, 6, 9, 15, 17], |
|
661
|
|
|
8: [2, 6, 10, 13, 16], |
|
662
|
|
|
9: [2, 7, 10, 14, 17], |
|
663
|
|
|
10: [2, 8, 9, 13, 14], |
|
664
|
|
|
11: [1, 4, 12, 15, 16], |
|
665
|
|
|
12: [1, 5, 11, 15, 17], |
|
666
|
|
|
13: [3, 4, 8, 10, 14, 16], |
|
667
|
|
|
14: [3, 5, 9, 10, 13, 17], |
|
668
|
|
|
15: [6, 7, 11, 12, 16, 17], |
|
669
|
|
|
16: [4, 6, 8, 11, 13, 15], |
|
670
|
|
|
17: [5, 7, 9, 12, 14, 15] |
|
671
|
|
|
}, |
|
672
|
|
|
'Dragon Curve Blob 6': { |
|
673
|
|
|
1: [4, 15], |
|
674
|
|
|
2: [8, 17], |
|
675
|
|
|
3: [8, 17], |
|
676
|
|
|
4: [1, 14], |
|
677
|
|
|
5: [7, 14], |
|
678
|
|
|
6: [7, 14], |
|
679
|
|
|
7: [5, 6], |
|
680
|
|
|
8: [2, 3], |
|
681
|
|
|
9: [11, 16], |
|
682
|
|
|
10: [13, 15], |
|
683
|
|
|
11: [9, 12], |
|
684
|
|
|
12: [11, 16, 17], |
|
685
|
|
|
13: [10, 16, 17], |
|
686
|
|
|
14: [4, 5, 6, 15], |
|
687
|
|
|
15: [1, 10, 14, 16], |
|
688
|
|
|
16: [9, 12, 13, 15], |
|
689
|
|
|
17: [2, 3, 12, 13] |
|
690
|
|
|
} |
|
691
|
|
|
} |
|
692
|
|
|
|
|
693
|
|
|
AdjacencyList = NewType('AdjacencyList', dict[int, list[int]]) |
|
694
|
|
|
|
|
695
|
|
|
|
|
696
|
|
|
def ladder_ring_graph(size: int) -> nx.Graph: |
|
697
|
|
|
g: nx.Graph = nx.ladder_graph(size) |
|
698
|
|
|
g.add_edge(size, size * 2 - 1) |
|
699
|
|
|
g.add_edge(0, size - 1) |
|
700
|
|
|
g.name = f'Ladder Ring[{size}]' |
|
701
|
|
|
return g |
|
702
|
|
|
|
|
703
|
|
|
|
|
704
|
|
|
def ladder_mobius_graph(size: int) -> nx.Graph: |
|
705
|
|
|
g = nx.ladder_graph(size) |
|
706
|
|
|
g.add_edge(size, size - 1) |
|
707
|
|
|
g.add_edge(0, size * 2 - 1) |
|
708
|
|
|
g.name = f'Ladder Möbius Ring[{size}]' |
|
709
|
|
|
return g |
|
710
|
|
|
|
|
711
|
|
|
|
|
712
|
|
|
def _cylinder_edges(circumference: int, length: int) -> Iterable[tuple[int, int]]: |
|
713
|
|
|
for k in range(length): |
|
714
|
|
|
start = k * circumference |
|
715
|
|
|
stop = (k + 1) * circumference - 1 |
|
716
|
|
|
if k > 0: |
|
717
|
|
|
yield start, start - circumference |
|
718
|
|
|
yield stop, stop - circumference |
|
719
|
|
|
for i in range(start, stop): |
|
720
|
|
|
yield i, i + 1 |
|
721
|
|
|
if k > 0: |
|
722
|
|
|
yield i, i - circumference |
|
723
|
|
|
yield stop, start |
|
724
|
|
|
|
|
725
|
|
|
|
|
726
|
|
|
def cylinder_graph(circumference: int, length: int) -> nx.Graph: |
|
727
|
|
|
g = nx.Graph(_cylinder_edges(circumference, length)) |
|
728
|
|
|
g.name = f'Cylinder[circumference={circumference},length={length}]' |
|
729
|
|
|
return g |
|
730
|
|
|
|
|
731
|
|
|
|
|
732
|
|
|
def _spiral_edges(n, k) -> Iterable[tuple[int, int]]: |
|
733
|
|
|
for i in range(n): |
|
734
|
|
|
yield i, i + 1 |
|
735
|
|
|
if i - k >= 0: |
|
736
|
|
|
yield i, i - k |
|
737
|
|
|
yield n, n - k |
|
738
|
|
|
|
|
739
|
|
|
|
|
740
|
|
|
def spiral_graph(n, k) -> nx.Graph: |
|
741
|
|
|
g = nx.Graph(_spiral_edges(n, k)) |
|
742
|
|
|
g.name = f'Spiral[n={n},k={k}]' |
|
743
|
|
|
return g |
|
744
|
|
|
|
|
745
|
|
|
|
|
746
|
|
|
def _spiral_torus_edges(n, k) -> Iterable[tuple[int, int]]: |
|
747
|
|
|
yield from _spiral_edges(n - 1, k) |
|
748
|
|
|
yield n - 1, 0 |
|
749
|
|
|
for i in range(k): |
|
750
|
|
|
yield i, n - k + i |
|
751
|
|
|
|
|
752
|
|
|
|
|
753
|
|
|
def spiral_torus_graph(n, k) -> nx.Graph: |
|
754
|
|
|
g = nx.Graph(_spiral_torus_edges(n, k)) |
|
755
|
|
|
g.name = f'Spiral Torus[n={n},k={k}]' |
|
756
|
|
|
return g |
|
757
|
|
|
|
|
758
|
|
|
|
|
759
|
|
|
def k_regular_edges(n, k) -> Iterable[tuple[int, int]]: |
|
760
|
|
|
yield from itertools.chain.from_iterable( |
|
761
|
|
|
((i, j) for j in range(i + 1, i + k + 1)) |
|
|
|
|
|
|
762
|
|
|
for i in range(n-k)) |
|
763
|
|
|
|
|
764
|
|
|
def k_regular_graph(n, k) -> nx.Graph: |
|
765
|
|
|
g = nx.Graph(k_regular_edges(n, k)) |
|
766
|
|
|
g.name = f'Generalized Buckyball[n={n},k={k}]' |
|
767
|
|
|
return g |
|
768
|
|
|
|
|
769
|
|
|
|
|
770
|
|
|
def adjacency_edges(adjacency_list: AdjacencyList) -> Iterable[tuple[int, int]]: |
|
771
|
|
|
yield from itertools.chain.from_iterable( |
|
772
|
|
|
((k, t) for t in v) |
|
|
|
|
|
|
773
|
|
|
for k, v |
|
774
|
|
|
in adjacency_list.items() |
|
775
|
|
|
) |
|
776
|
|
|
|
|
777
|
|
|
|
|
778
|
|
|
def from_adjacency_lists(adjacency_lists: dict[str, AdjacencyList]) -> dict[str, nx.Graph]: |
|
779
|
|
|
items = ( |
|
780
|
|
|
(name, adjacency_edges(adjacency_list)) |
|
|
|
|
|
|
781
|
|
|
for name, adjacency_list |
|
782
|
|
|
in adjacency_lists.items() |
|
783
|
|
|
) |
|
784
|
|
|
|
|
785
|
|
|
return {n: nx.Graph(list(e)) for n, e in items} |
|
786
|
|
|
|
|
787
|
|
|
|
|
788
|
|
|
def special_graphs(): |
|
789
|
|
|
return from_adjacency_lists(SPECIAL_GRAPHS_ADJACENCY_LISTS) |
|
790
|
|
|
|
|
791
|
|
|
|
|
792
|
|
|
def atlas(): |
|
793
|
|
|
""" |
|
794
|
|
|
Generate a dictionary of various graph structures and models based on the provided atlas. |
|
795
|
|
|
The function creates different types of graphs and models using NetworkX library. |
|
796
|
|
|
The generated graphs include Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron, Tesseract, Truncated Cube, |
|
797
|
|
|
Truncated Tetrahedron, Ladder, Ring, Möbius, Cylinder, Spiral, Spiral Torus, and Circulant[10,[2]]. |
|
798
|
|
|
Additionally, the function includes adjacency mappings for specific named graphs like |
|
799
|
|
|
Buckyball - Truncated Icosahedral Graph, D30 - Rhombic Triacontahedral Graph, Small Rhombicosidodecahedral Graph, |
|
800
|
|
|
Small Rhombicuboctahedral Graph, Great Rhombicosidodecahedral Graph, Disdyakis Dodecahedral Graph, |
|
801
|
|
|
Deltoidal Icositetrahedral Graph, Icosidodecahedral Graph, Deltoidal Hexecontahedral Graph, Kocohl74, |
|
802
|
|
|
Utility Graph, Errara Graph, and Dragon Curve Blob 6. |
|
803
|
|
|
The adjacency mappings define the connections between nodes in each named graph. |
|
804
|
|
|
The function returns a dictionary |
|
805
|
|
|
containing the named graphs as keys and their corresponding NetworkX graph objects as values. |
|
806
|
|
|
""" |
|
807
|
|
|
|
|
808
|
|
|
graph_atlas = { |
|
809
|
|
|
'Triangle': nx.cycle_graph(3), |
|
810
|
|
|
'Square': nx.cycle_graph(4), |
|
811
|
|
|
'Square Lattice[3,3]': nx.grid_2d_graph(3, 3), |
|
812
|
|
|
'Pentagon': nx.cycle_graph(5), |
|
813
|
|
|
'Hexagon': nx.cycle_graph(6), |
|
814
|
|
|
'Heptagon': nx.cycle_graph(7), |
|
815
|
|
|
'Octagon': nx.cycle_graph(8), |
|
816
|
|
|
'Tetrahedron': nx.tetrahedral_graph(), |
|
817
|
|
|
'Cube': nx.hypercube_graph(3), |
|
818
|
|
|
'Octahedron': nx.octahedral_graph(), |
|
819
|
|
|
'Dodecahedron': nx.dodecahedral_graph(), |
|
820
|
|
|
'Icosahedron': nx.icosahedral_graph(), |
|
821
|
|
|
'Tesseract': nx.hypercube_graph(4), |
|
822
|
|
|
'Hypercube[5]': nx.hypercube_graph(5), |
|
823
|
|
|
'Truncated Cube': nx.truncated_cube_graph(), |
|
824
|
|
|
'Truncated Tetrahedron': nx.truncated_tetrahedron_graph(), |
|
825
|
|
|
'Ladder[16]': nx.ladder_graph(16), |
|
826
|
|
|
'Ladder Ring[16]': ladder_ring_graph(16), |
|
827
|
|
|
'Ladder Möbius Ring[16]': ladder_mobius_graph(16), |
|
828
|
|
|
'Cylinder[6,8]': cylinder_graph(6, 8), |
|
829
|
|
|
'Spiral[128,8]': spiral_graph(128, 8), |
|
830
|
|
|
'Spiral Torus[128,8]': spiral_torus_graph(128, 8), |
|
831
|
|
|
'Chvátal': nx.chvatal_graph(), |
|
832
|
|
|
'Circulant[10,[2]]': nx.circulant_graph(10, [2]), |
|
833
|
|
|
'Desargues': nx.desargues_graph(), |
|
834
|
|
|
'Dorogovtsev-Goltsev-Mendes[4]': nx.dorogovtsev_goltsev_mendes_graph(4), |
|
835
|
|
|
'Frucht': nx.frucht_graph(), |
|
836
|
|
|
'Heawood': nx.heawood_graph(), |
|
837
|
|
|
'Hoffman-Singleton': nx.hoffman_singleton_graph(), |
|
838
|
|
|
# 'Margulis-Gabber-Galil[8]': nx.margulis_gabber_galil_graph(8), |
|
839
|
|
|
'Papus': nx.pappus_graph(), |
|
840
|
|
|
'Petersen': nx.petersen_graph(), |
|
841
|
|
|
'Sedgewick Maze': nx.sedgewick_maze_graph(), |
|
842
|
|
|
'Tutte': nx.tutte_graph(), |
|
843
|
|
|
} |
|
844
|
|
|
|
|
845
|
|
|
graph_atlas.update(special_graphs()) |
|
846
|
|
|
|
|
847
|
|
|
def clean(s: str): |
|
848
|
|
|
# Remove invalid characters |
|
849
|
|
|
s = re.sub('[^0-9a-zA-Z_]', '_', s) |
|
850
|
|
|
|
|
851
|
|
|
# Remove leading characters until we find a letter or underscore |
|
852
|
|
|
s = re.sub('^[^a-zA-Z_]+', '', s) |
|
853
|
|
|
|
|
854
|
|
|
return s |
|
855
|
|
|
|
|
856
|
|
|
for name, g in graph_atlas.items(): |
|
857
|
|
|
_type = clean(name).capitalize() |
|
858
|
|
|
nx.set_node_attributes(g, _type, 'type') |
|
859
|
|
|
nx.set_edge_attributes(g, _type, 'type') |
|
860
|
|
|
|
|
861
|
|
|
return graph_atlas |
|
862
|
|
|
|
|
863
|
|
|
|