1
|
|
|
"""Implements core function nearest_neighbours used for AMD and PDD |
2
|
|
|
calculations. |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
from typing import Tuple, Iterable, Callable |
6
|
|
|
from itertools import product, tee, accumulate |
7
|
|
|
import functools |
8
|
|
|
|
9
|
|
|
import numba |
10
|
|
|
import numpy as np |
11
|
|
|
from scipy.spatial import KDTree |
12
|
|
|
from scipy.spatial.distance import cdist |
13
|
|
|
|
14
|
|
|
__all__ = [ |
15
|
|
|
'nearest_neighbours', |
16
|
|
|
'nearest_neighbours_data', |
17
|
|
|
'nearest_neighbours_minval', |
18
|
|
|
'generate_concentric_cloud' |
19
|
|
|
] |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
def nearest_neighbours( |
23
|
|
|
motif: np.ndarray, cell: np.ndarray, x: np.ndarray, k: int |
24
|
|
|
) -> np.ndarray: |
25
|
|
|
"""Find distances to ``k`` nearest neighbours in a periodic set for |
26
|
|
|
each point in ``x``. |
27
|
|
|
|
28
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
29
|
|
|
set of points ``x`` and an integer ``k``, find distances to the |
30
|
|
|
``k`` nearest neighbours in the periodic set for all points in |
31
|
|
|
``x``. Returns an array with shape (x.shape[0], k) of distances to |
32
|
|
|
the neighbours. This function only returns distances, see the |
33
|
|
|
function nearest_neighbours_data() to also get the point cloud and |
34
|
|
|
indices of the points which are neighbours. |
35
|
|
|
|
36
|
|
|
Parameters |
37
|
|
|
---------- |
38
|
|
|
motif : :class:`numpy.ndarray` |
39
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
40
|
|
|
cell : :class:`numpy.ndarray` |
41
|
|
|
The unit cell as a square array, shape (dims, dims). |
42
|
|
|
x : :class:`numpy.ndarray` |
43
|
|
|
Array of points to query for neighbours. For AMD/PDD invariants |
44
|
|
|
this is the motif, or more commonly an asymmetric unit of it. |
45
|
|
|
k : int |
46
|
|
|
Number of nearest neighbours to find for each point in ``x``. |
47
|
|
|
|
48
|
|
|
Returns |
49
|
|
|
------- |
50
|
|
|
dists : numpy.ndarray |
51
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
52
|
|
|
``x`` to their ``k`` nearest neighbours in the periodic set in |
53
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
54
|
|
|
n-th nearest neighbour in the periodic set. |
55
|
|
|
""" |
56
|
|
|
|
57
|
|
|
m, dims = motif.shape |
58
|
|
|
# Get an initial collection of lattice points + a generator for more |
59
|
|
|
int_lattice, int_lat_generator = _integer_lattice_batches(dims, k / m) |
60
|
|
|
cloud = _int_lattice_to_cloud(motif, cell, int_lattice) |
61
|
|
|
# cloud = _lattice_to_cloud(motif, int_lattice @ cell) |
62
|
|
|
|
63
|
|
|
# Squared distances to k nearest neighbours |
64
|
|
|
sqdists = cdist(x, cloud, metric='sqeuclidean') |
65
|
|
|
motif_diam = np.sqrt(_max_in_first_n_columns(sqdists, m)) |
66
|
|
|
sqdists.partition(k - 1) |
67
|
|
|
sqdists = sqdists[:, :k] |
68
|
|
|
sqdists.sort() |
69
|
|
|
|
70
|
|
|
# Generate layers of lattice until they are too far away to give nearer |
71
|
|
|
# neighbours. For a lattice point l, points in l + motif are further away |
72
|
|
|
# from x than |l| - max|p-p'| (p in x, p' in motif), giving a bound we can |
73
|
|
|
# use to rule out distant lattice points. |
74
|
|
|
max_sqd = _max_in_column(sqdists, k - 1) |
75
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
76
|
|
|
|
77
|
|
|
while True: |
78
|
|
|
|
79
|
|
|
# Get next layer of lattice |
80
|
|
|
lattice = _close_lattice_points(next(int_lat_generator), cell, bound) |
81
|
|
|
if lattice.size == 0: # None are close enough |
82
|
|
|
break |
83
|
|
|
|
84
|
|
|
# Squared distances to new points |
85
|
|
|
cloud = _lattice_to_cloud(motif, lattice) |
86
|
|
|
sqdists_ = cdist(x, cloud, metric='sqeuclidean') |
87
|
|
|
close = sqdists_ < max_sqd |
88
|
|
|
if not np.any(close): # None are close enough |
89
|
|
|
break |
90
|
|
|
|
91
|
|
|
# Squared distances to up to k nearest new points |
92
|
|
|
sqdists_ = sqdists_[:, np.any(close, axis=0)] |
93
|
|
|
if sqdists_.shape[-1] > k: |
94
|
|
|
sqdists_.partition(k - 1) |
95
|
|
|
sqdists_ = sqdists_[:, :k] |
96
|
|
|
sqdists_.sort() |
97
|
|
|
|
98
|
|
|
# Merge existing and new distances |
99
|
|
|
sqdists = _merge_dists(sqdists, sqdists_) |
100
|
|
|
max_sqd = _max_in_column(sqdists, k - 1) |
101
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
102
|
|
|
|
103
|
|
|
return np.sqrt(sqdists) |
104
|
|
|
|
105
|
|
|
|
106
|
|
|
def nearest_neighbours_data( |
107
|
|
|
motif: np.ndarray, cell: np.ndarray, x: np.ndarray, k: int |
108
|
|
|
) -> Tuple[np.ndarray, ...]: |
109
|
|
|
"""Find the ``k`` nearest neighbours in a periodic set for each |
110
|
|
|
point in ``x``, along with data about those neighbours. |
111
|
|
|
|
112
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
113
|
|
|
set of points ``x`` and an integer ``k``, find the ``k`` nearest |
114
|
|
|
neighbours in the periodic set for all points in ``x``. Return |
115
|
|
|
an array of distances to neighbours, the point cloud generated |
116
|
|
|
during the search and the indices of which points in the cloud are |
117
|
|
|
the neighbours of points in ``x``. |
118
|
|
|
|
119
|
|
|
Note: the point ``cloud[i]`` in the periodic set comes from the |
120
|
|
|
motif point ``motif[i % len(motif)]``, because points are added to |
121
|
|
|
``cloud`` in batches of whole unit cells and not rearranged. |
122
|
|
|
|
123
|
|
|
Parameters |
124
|
|
|
---------- |
125
|
|
|
motif : :class:`numpy.ndarray` |
126
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
127
|
|
|
cell : :class:`numpy.ndarray` |
128
|
|
|
The unit cell as a square array, shape (dims, dims). |
129
|
|
|
x : :class:`numpy.ndarray` |
130
|
|
|
Array of points to query for neighbours. For AMD/PDD invariants |
131
|
|
|
this is the motif, or more commonly an asymmetric unit of it. |
132
|
|
|
k : int |
133
|
|
|
Number of nearest neighbours to find for each point in ``x``. |
134
|
|
|
|
135
|
|
|
Returns |
136
|
|
|
------- |
137
|
|
|
dists : numpy.ndarray |
138
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
139
|
|
|
``x`` to their ``k`` nearest neighbours in the periodic set in |
140
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
141
|
|
|
n-th nearest neighbour in the periodic set. |
142
|
|
|
cloud : numpy.ndarray |
143
|
|
|
Collection of points in the periodic set that were generated |
144
|
|
|
during the search. Arranged such that cloud[i] comes from the |
145
|
|
|
motif point motif[i % len(motif)] by translation. |
146
|
|
|
inds : numpy.ndarray |
147
|
|
|
Array shape ``(x.shape[0], k)`` containing the indices of |
148
|
|
|
nearest neighbours in ``cloud``, e.g. the n-th nearest neighbour |
149
|
|
|
to ``x[m]`` is ``cloud[inds[m][n]]``. |
150
|
|
|
""" |
151
|
|
|
|
152
|
|
|
full_cloud = [] |
153
|
|
|
m, dims = motif.shape |
154
|
|
|
# Get an initial collection of lattice points + a generator for more |
155
|
|
|
int_lattice, int_lat_generator = _integer_lattice_batches(dims, k / m) |
156
|
|
|
# cloud = _int_lattice_to_cloud(motif, cell, int_lattice) |
157
|
|
|
cloud = _lattice_to_cloud(motif, int_lattice @ cell) |
158
|
|
|
full_cloud.append(cloud) |
159
|
|
|
cloud_ind_offset = len(cloud) |
160
|
|
|
|
161
|
|
|
# Squared distances to k nearest neighbours + inds of neighbours in cloud |
162
|
|
|
sqdists = cdist(x, cloud, metric='sqeuclidean') |
163
|
|
|
motif_diam = np.sqrt(_max_in_first_n_columns(sqdists, m)) |
164
|
|
|
part_inds = np.argpartition(sqdists, k - 1)[:, :k] |
165
|
|
|
part_sqdists = np.take_along_axis(sqdists, part_inds, axis=-1)[:, :k] |
166
|
|
|
part_sort_inds = np.argsort(part_sqdists) |
167
|
|
|
inds = np.take_along_axis(part_inds, part_sort_inds, axis=-1) |
168
|
|
|
sqdists = np.take_along_axis(part_sqdists, part_sort_inds, axis=-1) |
169
|
|
|
|
170
|
|
|
# Generate layers of lattice until they are too far away to give nearer |
171
|
|
|
# neighbours. For a lattice point l, points in l + motif are further away |
172
|
|
|
# from x than |l| - max|p-p'| (p in x, p' in motif), giving a bound we can |
173
|
|
|
# use to rule out distant lattice points. |
174
|
|
|
max_sqd = _max_in_column(sqdists, k - 1) |
175
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
176
|
|
|
|
177
|
|
|
while True: |
178
|
|
|
|
179
|
|
|
# Get next layer of lattice |
180
|
|
|
lattice = _close_lattice_points(next(int_lat_generator), cell, bound) |
181
|
|
|
if lattice.size == 0: # None are close enough |
182
|
|
|
break |
183
|
|
|
|
184
|
|
|
cloud = _lattice_to_cloud(motif, lattice) |
185
|
|
|
full_cloud.append(cloud) |
186
|
|
|
# Squared distances to new points |
187
|
|
|
sqdists_ = cdist(x, cloud, metric='sqeuclidean') |
188
|
|
|
close = sqdists_ < max_sqd |
189
|
|
|
if not np.any(close): # None are close enough |
190
|
|
|
break |
191
|
|
|
|
192
|
|
|
# Squared distances to up to k nearest new points + inds |
193
|
|
|
part_inds = np.argpartition(sqdists_, k - 1)[:, :k] |
194
|
|
|
part_sqdists = np.take_along_axis(sqdists_, part_inds, axis=-1)[:, :k] |
195
|
|
|
part_sort_inds = np.argsort(part_sqdists) |
196
|
|
|
inds_ = np.take_along_axis(part_inds, part_sort_inds, axis=-1) |
197
|
|
|
sqdists_ = np.take_along_axis(part_sqdists, part_sort_inds, axis=-1) |
198
|
|
|
|
199
|
|
|
# Move inds_ so they point to full_cloud instead of cloud |
200
|
|
|
inds_ += cloud_ind_offset |
201
|
|
|
cloud_ind_offset += len(cloud) |
202
|
|
|
|
203
|
|
|
# Merge sqdists and sqdists_, and inds and inds_ |
204
|
|
|
sqdists, inds = _merge_dists_inds(sqdists, sqdists_, inds, inds_) |
205
|
|
|
max_sqd = _max_in_column(sqdists, k - 1) |
206
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
207
|
|
|
|
208
|
|
|
return np.sqrt(sqdists), np.concatenate(full_cloud), inds |
209
|
|
|
|
210
|
|
|
|
211
|
|
|
def _integer_lattice_batches_cache(integer_lattice_batches_func): |
212
|
|
|
"""Specialised cache for ``_integer_lattice_batches``. Stores layers |
213
|
|
|
of integer lattice points from ``_generate_integer_lattice`` |
214
|
|
|
already concatenated to avoid re-computing and concatenating them. |
215
|
|
|
How many layers are needed depends on the ratio of k to m, so this |
216
|
|
|
is passed to the cache. One cache is kept for each dimension. |
217
|
|
|
""" |
218
|
|
|
|
219
|
|
|
cache = {} # (dims, n_layers): [layers, generator] |
220
|
|
|
npoints_cache = {} # dims: [#points in layer for layer=1,2,...] |
221
|
|
|
|
222
|
|
|
@functools.wraps(integer_lattice_batches_func) |
223
|
|
|
def wrapper(dims, k_over_m): |
224
|
|
|
|
225
|
|
|
if dims not in npoints_cache: |
|
|
|
|
226
|
|
|
npoints_cache[dims] = [] |
227
|
|
|
|
228
|
|
|
# Use npoints_cache to get how many layers of the lattice are needed |
229
|
|
|
n_layers = 1 |
230
|
|
|
for n_points in npoints_cache[dims]: |
231
|
|
|
if n_points > k_over_m: |
232
|
|
|
break |
233
|
|
|
n_layers += 1 |
234
|
|
|
n_layers += 1 |
235
|
|
|
|
236
|
|
|
# Update cache and possibly npoints_cache |
237
|
|
|
if (dims, n_layers) not in cache: |
|
|
|
|
238
|
|
|
layers, generator = integer_lattice_batches_func(dims, k_over_m) |
239
|
|
|
n_layers = len(layers) |
240
|
|
|
|
241
|
|
|
# If more layers were made than seen so far, update npoints_cache |
242
|
|
|
if len(npoints_cache[dims]) < n_layers: |
243
|
|
|
npoints_cache[dims] = list(accumulate(len(i) for i in layers)) |
244
|
|
|
cache[(dims, n_layers)] = [np.concatenate(layers), generator] |
245
|
|
|
|
246
|
|
|
layers, generator = cache[(dims, n_layers)] |
247
|
|
|
cache[(dims, n_layers)][1], ret_generator = tee(generator) |
248
|
|
|
|
249
|
|
|
return layers, ret_generator |
250
|
|
|
|
251
|
|
|
return wrapper |
252
|
|
|
|
253
|
|
|
|
254
|
|
|
@_integer_lattice_batches_cache |
255
|
|
|
def _integer_lattice_batches( |
256
|
|
|
dims: int, k_over_m: float |
257
|
|
|
) -> Tuple[np.ndarray, Iterable[np.ndarray]]: |
258
|
|
|
"""Return an initial batch of integer lattice points (number |
259
|
|
|
according to k / m) and a generator for more distant points. Results |
260
|
|
|
are cached for speed. |
261
|
|
|
|
262
|
|
|
Parameters |
263
|
|
|
---------- |
264
|
|
|
dims : int |
265
|
|
|
The dimension of Euclidean space the lattice is in. |
266
|
|
|
k_over_m : float |
267
|
|
|
Number of nearest neighbours to find (parameter of |
268
|
|
|
nearest_neighbours, k) divided by the number of motif points in |
269
|
|
|
the periodic set (m). Used to determine how many layers of the |
270
|
|
|
integer lattice to return. |
271
|
|
|
|
272
|
|
|
Returns |
273
|
|
|
------- |
274
|
|
|
initial_integer_lattice : :class:`numpy.ndarray` |
275
|
|
|
A collection of integer lattice points. Consists of the first |
276
|
|
|
few layers generated by ``integer_lattice_generator`` (number of |
277
|
|
|
layers depends on m, k). |
278
|
|
|
integer_lattice_generator |
279
|
|
|
A generator for integer lattice points more distant than those |
280
|
|
|
in ``initial_integer_lattice``. |
281
|
|
|
""" |
282
|
|
|
|
283
|
|
|
int_lattice_generator = iter(_generate_integer_lattice(dims)) |
284
|
|
|
layers = [next(int_lattice_generator)] |
285
|
|
|
n_points = 1 |
286
|
|
|
while n_points <= k_over_m: |
287
|
|
|
layer = next(int_lattice_generator) |
288
|
|
|
n_points += layer.shape[0] |
289
|
|
|
layers.append(layer) |
290
|
|
|
layers.append(next(int_lattice_generator)) |
291
|
|
|
return layers, int_lattice_generator |
292
|
|
|
|
293
|
|
|
|
294
|
|
|
def memoized_generator(generator_function: Callable) -> Callable: |
295
|
|
|
"""Caches results of a generator.""" |
296
|
|
|
cache = {} |
297
|
|
|
@functools.wraps(generator_function) |
298
|
|
|
def wrapper(*args) -> Iterable: |
299
|
|
|
if args not in cache: |
|
|
|
|
300
|
|
|
cache[args] = generator_function(*args) |
301
|
|
|
cache[args], r = tee(cache[args]) |
302
|
|
|
return r |
303
|
|
|
return wrapper |
304
|
|
|
|
305
|
|
|
|
306
|
|
|
@memoized_generator |
307
|
|
|
def _generate_integer_lattice(dims: int) -> Iterable[np.ndarray]: |
308
|
|
|
"""Generate batches of integer lattice points. Each yield gives all |
309
|
|
|
points (that have not already been yielded) inside a sphere centered |
310
|
|
|
at the origin with radius d; d starts at 0 and increments by 1 on |
311
|
|
|
each loop. |
312
|
|
|
|
313
|
|
|
Parameters |
314
|
|
|
---------- |
315
|
|
|
dims : int |
316
|
|
|
The dimension of Euclidean space the lattice is in. |
317
|
|
|
|
318
|
|
|
Yields |
319
|
|
|
------- |
320
|
|
|
:class:`numpy.ndarray` |
321
|
|
|
Yields arrays of integer lattice points in `dims`-dimensional |
322
|
|
|
Euclidean space. |
323
|
|
|
""" |
324
|
|
|
|
325
|
|
|
d = 0 |
326
|
|
|
if dims == 1: |
327
|
|
|
yield np.zeros((1, 1), dtype=np.float64) |
328
|
|
|
while True: |
329
|
|
|
d += 1 |
330
|
|
|
yield np.array([[-d], [d]], dtype=np.float64) |
331
|
|
|
|
332
|
|
|
ymax = {} |
333
|
|
|
while True: |
334
|
|
|
positive_int_lattice = [] |
335
|
|
|
while True: |
336
|
|
|
batch = False |
337
|
|
|
for xy in product(range(d + 1), repeat=dims-1): |
338
|
|
|
if xy not in ymax: |
339
|
|
|
ymax[xy] = 0 |
340
|
|
|
if sum(i**2 for i in xy) + ymax[xy]**2 <= d**2: |
341
|
|
|
positive_int_lattice.append((*xy, ymax[xy])) |
342
|
|
|
batch = True |
343
|
|
|
ymax[xy] += 1 |
344
|
|
|
if not batch: |
345
|
|
|
break |
346
|
|
|
pos_int_lat = np.array(positive_int_lattice, dtype=np.float64) |
347
|
|
|
yield _reflect_positive_integer_lattice(pos_int_lat) |
348
|
|
|
d += 1 |
349
|
|
|
|
350
|
|
|
|
351
|
|
|
@numba.njit(cache=True, fastmath=True) |
352
|
|
|
def _reflect_positive_integer_lattice( |
353
|
|
|
positive_int_lattice: np.ndarray |
354
|
|
|
) -> np.ndarray: |
355
|
|
|
"""Reflect points in the positive quadrant across all combinations |
356
|
|
|
of axes, without duplicating points that are invariant under |
357
|
|
|
reflections. |
358
|
|
|
""" |
359
|
|
|
|
360
|
|
|
dims = positive_int_lattice.shape[-1] |
361
|
|
|
batches = [] |
362
|
|
|
batches.extend(positive_int_lattice) |
363
|
|
|
|
364
|
|
|
for n_reflections in range(1, dims + 1): |
365
|
|
|
|
366
|
|
|
axes = np.arange(n_reflections) |
367
|
|
|
batches.extend(_reflect_in_axes(positive_int_lattice, axes)) |
368
|
|
|
|
369
|
|
|
while True: |
370
|
|
|
i = n_reflections - 1 |
371
|
|
|
for _ in range(n_reflections): |
372
|
|
|
if axes[i] != i + dims - n_reflections: |
373
|
|
|
break |
374
|
|
|
i -= 1 |
375
|
|
|
else: |
376
|
|
|
break |
377
|
|
|
axes[i] += 1 |
378
|
|
|
for j in range(i + 1, n_reflections): |
379
|
|
|
axes[j] = axes[j-1] + 1 |
380
|
|
|
batches.extend(_reflect_in_axes(positive_int_lattice, axes)) |
381
|
|
|
|
382
|
|
|
int_lattice = np.empty(shape=(len(batches), dims), dtype=np.float64) |
383
|
|
|
for i in range(len(batches)): |
384
|
|
|
int_lattice[i] = batches[i] |
385
|
|
|
|
386
|
|
|
return int_lattice |
387
|
|
|
|
388
|
|
|
|
389
|
|
|
@numba.njit(cache=True, fastmath=True) |
390
|
|
|
def _reflect_in_axes( |
391
|
|
|
positive_int_lattice: np.ndarray, axes: np.ndarray |
392
|
|
|
) -> np.ndarray: |
393
|
|
|
"""Reflect points in `positive_int_lattice` in the axes described by |
394
|
|
|
`axes`, without duplicating invariant points. |
395
|
|
|
""" |
396
|
|
|
not_on_axes = (positive_int_lattice[:, axes] == 0).sum(axis=-1) == 0 |
397
|
|
|
int_lattice = positive_int_lattice[not_on_axes] |
398
|
|
|
int_lattice[:, axes] *= -1 |
399
|
|
|
return int_lattice |
400
|
|
|
|
401
|
|
|
|
402
|
|
|
@numba.njit(cache=True, fastmath=True) |
403
|
|
|
def _close_lattice_points( |
404
|
|
|
int_lattice: np.ndarray, cell: np.ndarray, bound: float |
405
|
|
|
) -> np.ndarray: |
406
|
|
|
"""Given integer lattice points, a unit cell and ``bound``, return |
407
|
|
|
lattice points which are close enough such that the corresponding |
408
|
|
|
motif copy could contain nearest neighbours. ``bound`` should be |
409
|
|
|
equal to (max_d + motif_diam) ** 2, where max_d is the maximum |
410
|
|
|
k-th nearest neighbour distance found so far and motif_diam is the |
411
|
|
|
largest distance between any point in the query set and motif. |
412
|
|
|
""" |
413
|
|
|
|
414
|
|
|
lattice = int_lattice @ cell |
415
|
|
|
inds = [] |
416
|
|
|
for i in range(len(lattice)): |
417
|
|
|
s = 0 |
418
|
|
|
for xyz in lattice[i]: |
419
|
|
|
s += xyz ** 2 |
420
|
|
|
if s < bound: |
421
|
|
|
inds.append(i) |
422
|
|
|
n_points = len(inds) |
423
|
|
|
ret = np.empty((n_points, cell.shape[0]), dtype=np.float64) |
424
|
|
|
for i in range(n_points): |
425
|
|
|
ret[i] = lattice[inds[i]] |
426
|
|
|
return ret |
427
|
|
|
|
428
|
|
|
|
429
|
|
|
@numba.njit(cache=True, fastmath=True) |
430
|
|
|
def _lattice_to_cloud(motif: np.ndarray, lattice: np.ndarray) -> np.ndarray: |
431
|
|
|
"""Create a cloud of points from a periodic set with ``motif``, |
432
|
|
|
and a collection of lattice points ``lattice``. |
433
|
|
|
""" |
434
|
|
|
m = len(motif) |
435
|
|
|
layer = np.empty((m * len(lattice), motif.shape[-1]), dtype=np.float64) |
436
|
|
|
i1 = 0 |
437
|
|
|
for translation in lattice: |
438
|
|
|
i2 = i1 + m |
439
|
|
|
layer[i1:i2] = motif + translation |
440
|
|
|
i1 = i2 |
441
|
|
|
return layer |
442
|
|
|
|
443
|
|
|
|
444
|
|
|
@numba.njit(cache=True, fastmath=True) |
445
|
|
|
def _int_lattice_to_cloud( |
446
|
|
|
motif: np.ndarray, cell: np.ndarray, int_lattice: np.ndarray |
447
|
|
|
) -> np.ndarray: |
448
|
|
|
"""Create a cloud of points from a periodic set given by ``motif`` |
449
|
|
|
and ``cell`` from a collection of integer lattice points |
450
|
|
|
``int_lattice``. |
451
|
|
|
""" |
452
|
|
|
return _lattice_to_cloud(motif, int_lattice @ cell) |
453
|
|
|
|
454
|
|
|
|
455
|
|
|
@numba.njit(cache=True, fastmath=True) |
456
|
|
|
def _max_in_column(arr: np.ndarray, col: int) -> float: |
457
|
|
|
"""Return maximum value in chosen column col of array arr. Assumes |
458
|
|
|
all values of arr are non-negative.""" |
459
|
|
|
ret = 0 |
460
|
|
|
for i in range(arr.shape[0]): |
461
|
|
|
v = arr[i, col] |
462
|
|
|
if v > ret: |
463
|
|
|
ret = v |
464
|
|
|
return ret |
465
|
|
|
|
466
|
|
|
|
467
|
|
|
@numba.njit(cache=True, fastmath=True) |
468
|
|
|
def _max_in_first_n_columns(arr: np.ndarray, n: int) -> float: |
469
|
|
|
"""Return maximum value in all columns up to a chosen column col of |
470
|
|
|
array arr.""" |
471
|
|
|
ret = 0 |
472
|
|
|
for col in range(n): |
473
|
|
|
v = _max_in_column(arr, col) |
474
|
|
|
if v > ret: |
475
|
|
|
ret = v |
476
|
|
|
return ret |
477
|
|
|
|
478
|
|
|
|
479
|
|
|
@numba.njit(cache=True, fastmath=True) |
480
|
|
|
def _merge_dists(dists: np.ndarray, dists_: np.ndarray) -> np.ndarray: |
481
|
|
|
"""Merge two 2D arrays sorted along last axis into one sorted array |
482
|
|
|
with same number of columns as ``dists``. Optimised for the distance |
483
|
|
|
arrays in nearest_neighbours, where ``dists`` will contain most of |
484
|
|
|
the smallest elements and only a few values in later columns will |
485
|
|
|
need to be replaced with values in ``dists_``. |
486
|
|
|
""" |
487
|
|
|
|
488
|
|
|
m, n_new_points = dists_.shape |
489
|
|
|
ret = np.copy(dists) |
490
|
|
|
|
491
|
|
|
for i in range(m): |
492
|
|
|
|
493
|
|
|
# Traverse row backwards until value smaller than dists_[i, 0] |
494
|
|
|
j = 0 |
495
|
|
|
dp_ = 0 |
496
|
|
|
d_ = dists_[i, dp_] |
497
|
|
|
|
498
|
|
|
while True: |
499
|
|
|
j -= 1 |
500
|
|
|
if dists[i, j] <= d_: |
501
|
|
|
j += 1 |
502
|
|
|
break |
503
|
|
|
|
504
|
|
|
# If dists_[i, 0] >= dists[i, -1], no need to insert |
505
|
|
|
if j == 0: |
506
|
|
|
continue |
507
|
|
|
|
508
|
|
|
# dp points to dists[i], dp_ points to dists_[i] |
509
|
|
|
# Fill ret with the larger dist, then increment pointers and repeat |
510
|
|
|
dp = j |
511
|
|
|
d = dists[i, dp] |
512
|
|
|
|
513
|
|
|
while j < 0: |
514
|
|
|
|
515
|
|
|
if d <= d_: |
516
|
|
|
ret[i, j] = d |
517
|
|
|
dp += 1 |
518
|
|
|
d = dists[i, dp] |
519
|
|
|
else: |
520
|
|
|
ret[i, j] = d_ |
521
|
|
|
dp_ += 1 |
522
|
|
|
|
523
|
|
|
if dp_ < n_new_points: |
524
|
|
|
d_ = dists_[i, dp_] |
525
|
|
|
else: # ran out of points in dists_ |
526
|
|
|
d_ = np.inf |
527
|
|
|
|
528
|
|
|
j += 1 |
529
|
|
|
|
530
|
|
|
return ret |
531
|
|
|
|
532
|
|
|
|
533
|
|
|
@numba.njit(cache=True, fastmath=True) |
534
|
|
|
def _merge_dists_inds( |
535
|
|
|
dists: np.ndarray, |
536
|
|
|
dists_: np.ndarray, |
537
|
|
|
inds: np.ndarray, |
538
|
|
|
inds_: np.ndarray |
539
|
|
|
) -> Tuple[np.ndarray, np.ndarray]: |
540
|
|
|
"""The same as _merge_dists, but also merges two arrays |
541
|
|
|
``inds`` and ``inds_`` in the same pattern ``dists`` and ``dists_`` |
542
|
|
|
are merged. |
543
|
|
|
""" |
544
|
|
|
|
545
|
|
|
m, n_new_points = dists_.shape |
546
|
|
|
ret_dists = np.copy(dists) |
547
|
|
|
ret_inds = np.copy(inds) |
548
|
|
|
|
549
|
|
|
for i in range(m): |
550
|
|
|
|
551
|
|
|
j = 0 |
552
|
|
|
dp_ = 0 |
553
|
|
|
d_ = dists_[i, dp_] |
554
|
|
|
p_ = inds_[i, dp_] |
555
|
|
|
|
556
|
|
|
while True: |
557
|
|
|
j -= 1 |
558
|
|
|
if dists[i, j] <= d_: |
559
|
|
|
j += 1 |
560
|
|
|
break |
561
|
|
|
|
562
|
|
|
if j == 0: |
563
|
|
|
continue |
564
|
|
|
|
565
|
|
|
dp = j |
566
|
|
|
d = dists[i, dp] |
567
|
|
|
p = inds[i, dp] |
568
|
|
|
|
569
|
|
|
while j < 0: |
570
|
|
|
|
571
|
|
|
if d <= d_: |
572
|
|
|
ret_dists[i, j] = d |
573
|
|
|
ret_inds[i, j] = p |
574
|
|
|
dp += 1 |
575
|
|
|
d = dists[i, dp] |
576
|
|
|
p = inds[i, dp] |
577
|
|
|
else: |
578
|
|
|
ret_dists[i, j] = d_ |
579
|
|
|
ret_inds[i, j] = p_ |
580
|
|
|
dp_ += 1 |
581
|
|
|
|
582
|
|
|
if dp_ < n_new_points: |
583
|
|
|
d_ = dists_[i, dp_] |
584
|
|
|
p_ = inds_[i, dp_] |
585
|
|
|
else: |
586
|
|
|
d_ = np.inf |
587
|
|
|
|
588
|
|
|
j += 1 |
589
|
|
|
|
590
|
|
|
return ret_dists, ret_inds |
591
|
|
|
|
592
|
|
|
|
593
|
|
|
def nearest_neighbours_minval( |
594
|
|
|
motif: np.ndarray, cell: np.ndarray, min_val: float |
595
|
|
|
) -> Tuple[np.ndarray, ...]: |
596
|
|
|
"""Return the same ``dists``/PDD matrix as ``nearest_neighbours``, |
597
|
|
|
but with enough columns such that all values in the last column are |
598
|
|
|
at least ``min_val``. Unlike ``nearest_neighbours``, does not take a |
599
|
|
|
query array ``x`` but only finds neighbours to motif points, and |
600
|
|
|
does not return the point cloud or indices of the nearest |
601
|
|
|
neighbours. Used in ``PDD_reconstructable``. |
602
|
|
|
|
603
|
|
|
TODO: this function should be updated in line with |
604
|
|
|
nearest_neighbours. |
605
|
|
|
""" |
606
|
|
|
|
607
|
|
|
# Generate initial cloud of points from the periodic set |
608
|
|
|
int_lat_generator = _generate_integer_lattice(cell.shape[0]) |
609
|
|
|
int_lat_generator = iter(int_lat_generator) |
610
|
|
|
cloud = [] |
611
|
|
|
for _ in range(3): |
612
|
|
|
cloud.append(_lattice_to_cloud(motif, next(int_lat_generator) @ cell)) |
613
|
|
|
cloud = np.concatenate(cloud) |
614
|
|
|
|
615
|
|
|
# Find k neighbours in the point cloud for points in motif |
616
|
|
|
dists_, inds = KDTree( |
617
|
|
|
cloud, leafsize=30, compact_nodes=False, balanced_tree=False |
618
|
|
|
).query(motif, k=cloud.shape[0]) |
619
|
|
|
dists = np.zeros_like(dists_, dtype=np.float64) |
620
|
|
|
|
621
|
|
|
# Add layers & find k nearest neighbours until all distances smaller than |
622
|
|
|
# min_val don't change |
623
|
|
|
max_cdist = np.amax(cdist(motif, motif)) |
624
|
|
|
while True: |
625
|
|
|
|
626
|
|
|
if np.all(dists_[:, -1] >= min_val): |
627
|
|
|
col = np.argwhere(np.all(dists_ >= min_val, axis=0))[0][0] + 1 |
628
|
|
|
if np.array_equal(dists[:, :col], dists_[:, :col]): |
629
|
|
|
break |
630
|
|
|
|
631
|
|
|
dists = dists_ |
632
|
|
|
lattice = next(int_lat_generator) @ cell |
633
|
|
|
closest_dist_bound = np.linalg.norm(lattice, axis=-1) - max_cdist |
634
|
|
|
is_close = closest_dist_bound <= np.amax(dists_[:, -1]) |
635
|
|
|
if not np.any(is_close): |
636
|
|
|
break |
637
|
|
|
|
638
|
|
|
cloud = np.vstack((cloud, _lattice_to_cloud(motif, lattice[is_close]))) |
639
|
|
|
dists_, inds = KDTree( |
640
|
|
|
cloud, leafsize=30, compact_nodes=False, balanced_tree=False |
641
|
|
|
).query(motif, k=cloud.shape[0]) |
642
|
|
|
|
643
|
|
|
k = np.argwhere(np.all(dists >= min_val, axis=0))[0][0] |
644
|
|
|
return dists_[:, 1:k+1], cloud, inds |
645
|
|
|
|
646
|
|
|
|
647
|
|
|
def generate_concentric_cloud( |
648
|
|
|
motif: np.ndarray, cell: np.ndarray |
649
|
|
|
) -> Iterable[np.ndarray]: |
650
|
|
|
"""Generates batches of points from a periodic set given by (motif, |
651
|
|
|
cell) which get successively further away from the origin. |
652
|
|
|
|
653
|
|
|
Each yield gives all points (that have not already been yielded) |
654
|
|
|
which lie in a unit cell whose corner lattice point was generated by |
655
|
|
|
``generate_integer_lattice(motif.shape[1])``. |
656
|
|
|
|
657
|
|
|
Parameters |
658
|
|
|
---------- |
659
|
|
|
motif : :class:`numpy.ndarray` |
660
|
|
|
Cartesian representation of the motif, shape (no points, dims). |
661
|
|
|
cell : :class:`numpy.ndarray` |
662
|
|
|
Cartesian representation of the unit cell, shape (dims, dims). |
663
|
|
|
|
664
|
|
|
Yields |
665
|
|
|
------- |
666
|
|
|
:class:`numpy.ndarray` |
667
|
|
|
Yields arrays of points from the periodic set. |
668
|
|
|
""" |
669
|
|
|
|
670
|
|
|
int_lat_generator = _generate_integer_lattice(cell.shape[0]) |
671
|
|
|
for layer in int_lat_generator: |
672
|
|
|
yield _lattice_to_cloud(motif, layer @ cell) |
673
|
|
|
|