|
1
|
|
|
"""Functions for comparing AMDs and PDDs of crystals.""" |
|
2
|
|
|
|
|
3
|
|
|
from typing import List, Optional, Union, Tuple |
|
4
|
|
|
from functools import partial |
|
5
|
|
|
from itertools import combinations |
|
6
|
|
|
|
|
7
|
|
|
import numpy as np |
|
8
|
|
|
import numba |
|
9
|
|
|
from scipy.spatial.distance import cdist, pdist |
|
10
|
|
|
from joblib import Parallel, delayed |
|
11
|
|
|
import tqdm |
|
12
|
|
|
|
|
13
|
|
|
from ._emd import network_simplex |
|
14
|
|
|
from ._types import FloatArray |
|
15
|
|
|
|
|
16
|
|
|
__all__ = ["EMD", "AMD_cdist", "AMD_pdist", "PDD_cdist", "PDD_pdist"] |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
def EMD( |
|
20
|
|
|
pdd: FloatArray, |
|
21
|
|
|
pdd_: FloatArray, |
|
22
|
|
|
metric: Optional[str] = "chebyshev", |
|
23
|
|
|
return_transport: Optional[bool] = False, |
|
24
|
|
|
**kwargs, |
|
25
|
|
|
) -> Union[float, Tuple[float, FloatArray]]: |
|
26
|
|
|
r"""Calculate the Earth mover's distance (EMD) between two PDDs, aka |
|
27
|
|
|
the Wasserstein metric. |
|
28
|
|
|
|
|
29
|
|
|
Parameters |
|
30
|
|
|
---------- |
|
31
|
|
|
pdd : :class:`numpy.ndarray` |
|
32
|
|
|
PDD of a crystal. |
|
33
|
|
|
pdd\_ : :class:`numpy.ndarray` |
|
34
|
|
|
PDD of a crystal. |
|
35
|
|
|
metric : str or callable, default 'chebyshev' |
|
36
|
|
|
EMD between PDDs requires defining a distance between PDD rows. |
|
37
|
|
|
By default, Chebyshev (L-infinity) distance is chosen as with |
|
38
|
|
|
AMDs. Accepts any metric accepted by |
|
39
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
40
|
|
|
return_transport: bool, default False |
|
41
|
|
|
Instead return a tuple ``(emd, transport_plan)`` where |
|
42
|
|
|
transport_plan describes the optimal flow. |
|
43
|
|
|
|
|
44
|
|
|
Returns |
|
45
|
|
|
------- |
|
46
|
|
|
emd : float |
|
47
|
|
|
Earth mover's distance between two PDDs. If ``return_transport`` |
|
48
|
|
|
is True, return a tuple (emd, transport_plan). |
|
49
|
|
|
|
|
50
|
|
|
Raises |
|
51
|
|
|
------ |
|
52
|
|
|
ValueError |
|
53
|
|
|
Thrown if ``pdd`` and ``pdd_`` do not have the same number of |
|
54
|
|
|
columns. |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
emd_dist, transport_plan = _EMD( |
|
58
|
|
|
pdd[:, 0], pdd_[:, 0], pdd[:, 1:], pdd_[:, 1:], metric=metric, **kwargs |
|
59
|
|
|
) |
|
60
|
|
|
if return_transport: |
|
61
|
|
|
return emd_dist, transport_plan |
|
62
|
|
|
return emd_dist |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
def _EMD( |
|
66
|
|
|
weights: FloatArray, |
|
67
|
|
|
weights_: FloatArray, |
|
68
|
|
|
dist: FloatArray, |
|
69
|
|
|
dist_: FloatArray, |
|
70
|
|
|
metric: Optional[str] = None, |
|
71
|
|
|
**kwargs, |
|
72
|
|
|
) -> Tuple[float, FloatArray]: |
|
73
|
|
|
r"""Calculate the earth mover's distance (EMD) between two weighted |
|
74
|
|
|
distributions (collections of vectors). |
|
75
|
|
|
|
|
76
|
|
|
Parameters |
|
77
|
|
|
---------- |
|
78
|
|
|
dist : :class:`numpy.ndarray` |
|
79
|
|
|
``(n, d)`` array of items in the first distribution. |
|
80
|
|
|
dist_ : :class:`numpy.ndarray` |
|
81
|
|
|
``(m, d)`` array of items in the second distribution. |
|
82
|
|
|
weights : :class:`numpy.ndarray` |
|
83
|
|
|
Weights of items in ``dist``. |
|
84
|
|
|
weights\_ : :class:`numpy.ndarray` |
|
85
|
|
|
Weights of items in ``dist\_``. |
|
86
|
|
|
metric : str or callable, default 'chebyshev' |
|
87
|
|
|
Metric used as the base distance between items in ``dist`` and |
|
88
|
|
|
``dist\_``. For a list of accepted metrics see |
|
89
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
90
|
|
|
|
|
91
|
|
|
Returns |
|
92
|
|
|
------- |
|
93
|
|
|
emd : float |
|
94
|
|
|
Earth mover's distance between two PDDs. If ``return_transport`` |
|
95
|
|
|
is True, returns a tuple (emd, transport_plan). |
|
96
|
|
|
transport_plan : :class:`numpy.ndarray` |
|
97
|
|
|
Matrix of optimal flows between the two distributions. |
|
98
|
|
|
""" |
|
99
|
|
|
|
|
100
|
|
|
dm = cdist(dist, dist_, metric=metric, **kwargs) |
|
101
|
|
|
return network_simplex(weights, weights_, dm) |
|
102
|
|
|
|
|
103
|
|
|
|
|
104
|
|
|
def AMD_cdist( |
|
105
|
|
|
amds, amds_, metric: str = "chebyshev", low_memory: bool = False, **kwargs |
|
106
|
|
|
) -> FloatArray: |
|
107
|
|
|
r"""Compare two sets of AMDs with each other, returning a distance |
|
108
|
|
|
matrix. This function is essentially |
|
109
|
|
|
:func:`scipy.spatial.distance.cdist` with the default metric |
|
110
|
|
|
``chebyshev`` and a low memory option. |
|
111
|
|
|
|
|
112
|
|
|
Parameters |
|
113
|
|
|
---------- |
|
114
|
|
|
amds : ArrayLike |
|
115
|
|
|
A list/array of AMDs. |
|
116
|
|
|
amds\_ : ArrayLike |
|
117
|
|
|
A list/array of AMDs. |
|
118
|
|
|
metric : str or callable, default 'chebyshev' |
|
119
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinitys) |
|
120
|
|
|
distance. Accepts any metric accepted by |
|
121
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
122
|
|
|
low_memory : bool, default False |
|
123
|
|
|
Use a slower but more memory efficient method for large |
|
124
|
|
|
collections of AMDs (metric 'chebyshev' only). |
|
125
|
|
|
**kwargs : |
|
126
|
|
|
Extra arguments for ``metric``, passed to |
|
127
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
128
|
|
|
|
|
129
|
|
|
Returns |
|
130
|
|
|
------- |
|
131
|
|
|
dm : :class:`numpy.ndarray` |
|
132
|
|
|
A distance matrix shape ``(len(amds), len(amds_))``. ``dm[ij]`` |
|
133
|
|
|
is the distance (given by ``metric``) between ``amds[i]`` and |
|
134
|
|
|
``amds[j]``. |
|
135
|
|
|
""" |
|
136
|
|
|
|
|
137
|
|
|
amds = np.asarray(amds) |
|
138
|
|
|
|
|
139
|
|
|
if low_memory: |
|
140
|
|
|
if metric != "chebyshev": |
|
141
|
|
|
raise ValueError( |
|
142
|
|
|
"'low_memory' parameter of amd.AMD_cdist() only implemented " |
|
143
|
|
|
"with metric='chebyshev'" |
|
144
|
|
|
) |
|
145
|
|
|
dm = np.empty((len(amds), len(amds_))) |
|
146
|
|
|
for i, amd_vec in enumerate(amds): |
|
147
|
|
|
dm[i] = np.amax(np.abs(amds_ - amd_vec), axis=-1) |
|
148
|
|
|
else: |
|
149
|
|
|
dm = cdist(amds, amds_, metric=metric, **kwargs) |
|
150
|
|
|
return dm |
|
151
|
|
|
|
|
152
|
|
|
|
|
153
|
|
|
def AMD_pdist( |
|
154
|
|
|
amds, metric: str = "chebyshev", low_memory: bool = False, **kwargs |
|
155
|
|
|
) -> FloatArray: |
|
156
|
|
|
"""Compare a set of AMDs pairwise, returning a condensed distance |
|
157
|
|
|
matrix. This function is essentially |
|
158
|
|
|
:func:`scipy.spatial.distance.pdist` with the default metric |
|
159
|
|
|
``chebyshev`` and a low memory parameter. |
|
160
|
|
|
|
|
161
|
|
|
Parameters |
|
162
|
|
|
---------- |
|
163
|
|
|
amds : ArrayLike |
|
164
|
|
|
An list/array of AMDs. |
|
165
|
|
|
metric : str or callable, default 'chebyshev' |
|
166
|
|
|
Usually AMDs are compared with the Chebyshev (L-infinity) |
|
167
|
|
|
distance. Accepts any metric accepted by |
|
168
|
|
|
:func:`scipy.spatial.distance.pdist`. |
|
169
|
|
|
low_memory : bool, default False |
|
170
|
|
|
Use a slower but more memory efficient method for large |
|
171
|
|
|
collections of AMDs (metric 'chebyshev' only). |
|
172
|
|
|
**kwargs : |
|
173
|
|
|
Extra arguments for ``metric``, passed to |
|
174
|
|
|
:func:`scipy.spatial.distance.pdist`. |
|
175
|
|
|
|
|
176
|
|
|
Returns |
|
177
|
|
|
------- |
|
178
|
|
|
cdm : :class:`numpy.ndarray` |
|
179
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
|
180
|
|
|
matrix into a vector, just keeping the upper half. See the |
|
181
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
|
182
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
|
183
|
|
|
""" |
|
184
|
|
|
|
|
185
|
|
|
amds = np.asarray(amds) |
|
186
|
|
|
|
|
187
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
188
|
|
|
def _pdist_lowmem(amds): |
|
189
|
|
|
m = amds.shape[0] |
|
190
|
|
|
cdm = np.empty((m * (m - 1)) // 2, dtype=np.float64) |
|
191
|
|
|
ind = 0 |
|
192
|
|
|
for i in range(m): |
|
193
|
|
|
for j in range(i + 1, m): |
|
194
|
|
|
cdm[ind] = np.amax(np.abs(amds[i] - amds[j])) |
|
195
|
|
|
return cdm |
|
196
|
|
|
|
|
197
|
|
|
if low_memory: |
|
198
|
|
|
if metric != "chebyshev": |
|
199
|
|
|
raise ValueError( |
|
200
|
|
|
"'low_memory' parameter of amd.AMD_pdist() only implemented " |
|
201
|
|
|
"with metric='chebyshev'" |
|
202
|
|
|
) |
|
203
|
|
|
cdm = _pdist_lowmem(amds) |
|
204
|
|
|
else: |
|
205
|
|
|
cdm = pdist(amds, metric=metric, **kwargs) |
|
206
|
|
|
|
|
207
|
|
|
return cdm |
|
208
|
|
|
|
|
209
|
|
|
|
|
210
|
|
|
def PDD_cdist( |
|
211
|
|
|
pdds: List[FloatArray], |
|
212
|
|
|
pdds_: List[FloatArray], |
|
213
|
|
|
metric: str = "chebyshev", |
|
214
|
|
|
backend: str = "multiprocessing", |
|
215
|
|
|
n_jobs: Optional[int] = None, |
|
216
|
|
|
verbose: bool = False, |
|
217
|
|
|
**kwargs, |
|
218
|
|
|
) -> FloatArray: |
|
219
|
|
|
r"""Compare two sets of PDDs with each other, returning a distance |
|
220
|
|
|
matrix. Supports parallel processing via joblib. If using |
|
221
|
|
|
parallelisation, make sure to include an if __name__ == '__main__' |
|
222
|
|
|
guard around this function. |
|
223
|
|
|
|
|
224
|
|
|
Parameters |
|
225
|
|
|
---------- |
|
226
|
|
|
pdds : List[:class:`numpy.ndarray`] |
|
227
|
|
|
A list of PDDs. |
|
228
|
|
|
pdds\_ : List[:class:`numpy.ndarray`] |
|
229
|
|
|
A list of PDDs. |
|
230
|
|
|
metric : str or callable, default 'chebyshev' |
|
231
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
|
232
|
|
|
distance. Accepts any metric accepted by |
|
233
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
234
|
|
|
backend : str, default 'multiprocessing' |
|
235
|
|
|
The parallelization backend implementation. For a list of |
|
236
|
|
|
supported backends, see the backend argument of |
|
237
|
|
|
:class:`joblib.Parallel`. |
|
238
|
|
|
n_jobs : int, default None |
|
239
|
|
|
Maximum number of concurrent jobs for parallel processing with |
|
240
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
|
241
|
|
|
processing may be slower for small inputs. |
|
242
|
|
|
verbose : bool, default False |
|
243
|
|
|
Prints a progress bar. If using parallel processing |
|
244
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
|
245
|
|
|
is used, otherwise uses tqdm. |
|
246
|
|
|
**kwargs : |
|
247
|
|
|
Extra arguments for ``metric``, passed to |
|
248
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
249
|
|
|
|
|
250
|
|
|
Returns |
|
251
|
|
|
------- |
|
252
|
|
|
dm : :class:`numpy.ndarray` |
|
253
|
|
|
Returns a distance matrix shape ``(len(pdds), len(pdds_))``. The |
|
254
|
|
|
:math:`ij` th entry is the distance between ``pdds[i]`` and |
|
255
|
|
|
``pdds_[j]`` given by Earth mover's distance. |
|
256
|
|
|
""" |
|
257
|
|
|
|
|
258
|
|
|
kwargs.pop("return_transport", None) |
|
259
|
|
|
k = pdds[0].shape[-1] - 1 |
|
260
|
|
|
_verbose = 3 if verbose else 0 |
|
261
|
|
|
|
|
262
|
|
|
if n_jobs is not None and n_jobs not in (0, 1): |
|
263
|
|
|
# TODO: put results into preallocated empty array in place |
|
264
|
|
|
dm = Parallel(backend=backend, n_jobs=n_jobs, verbose=_verbose)( |
|
265
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds_[j]) |
|
266
|
|
|
for i in range(len(pdds)) |
|
267
|
|
|
for j in range(len(pdds_)) |
|
268
|
|
|
) |
|
269
|
|
|
dm = np.array(dm).reshape((len(pdds), len(pdds_))) |
|
270
|
|
|
|
|
271
|
|
|
else: |
|
272
|
|
|
n, m = len(pdds), len(pdds_) |
|
273
|
|
|
dm = np.empty((n, m)) |
|
274
|
|
|
if verbose: |
|
275
|
|
|
desc = f"Comparing {len(pdds)}x{len(pdds_)} PDDs (k={k})" |
|
276
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=n * m) |
|
277
|
|
|
for i in range(n): |
|
278
|
|
|
for j in range(m): |
|
279
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
|
280
|
|
|
progress_bar.update(1) |
|
281
|
|
|
progress_bar.close() |
|
282
|
|
|
else: |
|
283
|
|
|
for i in range(n): |
|
284
|
|
|
for j in range(m): |
|
285
|
|
|
dm[i, j] = EMD(pdds[i], pdds_[j], metric=metric, **kwargs) |
|
286
|
|
|
|
|
287
|
|
|
return dm |
|
288
|
|
|
|
|
289
|
|
|
|
|
290
|
|
|
def PDD_pdist( |
|
291
|
|
|
pdds: List[FloatArray], |
|
292
|
|
|
metric: str = "chebyshev", |
|
293
|
|
|
backend: str = "multiprocessing", |
|
294
|
|
|
n_jobs: Optional[int] = None, |
|
295
|
|
|
verbose: bool = False, |
|
296
|
|
|
**kwargs, |
|
297
|
|
|
) -> FloatArray: |
|
298
|
|
|
"""Compare a set of PDDs pairwise, returning a condensed distance |
|
299
|
|
|
matrix. Supports parallelisation via joblib. If using |
|
300
|
|
|
parallelisation, make sure to include a if __name__ == '__main__' |
|
301
|
|
|
guard around this function. |
|
302
|
|
|
|
|
303
|
|
|
Parameters |
|
304
|
|
|
---------- |
|
305
|
|
|
pdds : List[:class:`numpy.ndarray`] |
|
306
|
|
|
A list of PDDs. |
|
307
|
|
|
metric : str or callable, default 'chebyshev' |
|
308
|
|
|
Usually PDD rows are compared with the Chebyshev/l-infinity |
|
309
|
|
|
distance. Accepts any metric accepted by |
|
310
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
311
|
|
|
backend : str, default 'multiprocessing' |
|
312
|
|
|
The parallelization backend implementation. For a list of |
|
313
|
|
|
supported backends, see the backend argument of |
|
314
|
|
|
:class:`joblib.Parallel`. |
|
315
|
|
|
n_jobs : int, default None |
|
316
|
|
|
Maximum number of concurrent jobs for parallel processing with |
|
317
|
|
|
``joblib``. Set to -1 to use the maximum. Using parallel |
|
318
|
|
|
processing may be slower for small inputs. |
|
319
|
|
|
verbose : bool, default False |
|
320
|
|
|
Prints a progress bar. If using parallel processing |
|
321
|
|
|
(n_jobs > 1), the verbose argument of :class:`joblib.Parallel` |
|
322
|
|
|
is used, otherwise uses tqdm. |
|
323
|
|
|
**kwargs : |
|
324
|
|
|
Extra arguments for ``metric``, passed to |
|
325
|
|
|
:func:`scipy.spatial.distance.cdist`. |
|
326
|
|
|
|
|
327
|
|
|
Returns |
|
328
|
|
|
------- |
|
329
|
|
|
cdm : :class:`numpy.ndarray` |
|
330
|
|
|
Returns a condensed distance matrix. Collapses a square distance |
|
331
|
|
|
matrix into a vector, just keeping the upper half. See the |
|
332
|
|
|
function :func:`squareform <scipy.spatial.distance.squareform>` |
|
333
|
|
|
from SciPy to convert to a symmetric square distance matrix. |
|
334
|
|
|
""" |
|
335
|
|
|
|
|
336
|
|
|
kwargs.pop("return_transport", None) |
|
337
|
|
|
k = pdds[0].shape[-1] - 1 |
|
338
|
|
|
_verbose = 3 if verbose else 0 |
|
339
|
|
|
|
|
340
|
|
|
if n_jobs is not None and n_jobs > 1: |
|
341
|
|
|
# TODO: put results into preallocated empty array in place |
|
342
|
|
|
cdm = Parallel(backend=backend, n_jobs=n_jobs, verbose=_verbose)( |
|
343
|
|
|
delayed(partial(EMD, metric=metric, **kwargs))(pdds[i], pdds[j]) |
|
344
|
|
|
for i, j in combinations(range(len(pdds)), 2) |
|
345
|
|
|
) |
|
346
|
|
|
cdm = np.array(cdm) |
|
347
|
|
|
|
|
348
|
|
|
else: |
|
349
|
|
|
m = len(pdds) |
|
350
|
|
|
cdm_len = (m * (m - 1)) // 2 |
|
351
|
|
|
cdm = np.empty(cdm_len, dtype=np.float64) |
|
352
|
|
|
inds = ((i, j) for i in range(0, m - 1) for j in range(i + 1, m)) |
|
353
|
|
|
if verbose: |
|
354
|
|
|
desc = f"Comparing {len(pdds)} PDDs pairwise (k={k})" |
|
355
|
|
|
progress_bar = tqdm.tqdm(desc=desc, total=cdm_len) |
|
356
|
|
|
for r, (i, j) in enumerate(inds): |
|
357
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
|
358
|
|
|
progress_bar.update(1) |
|
359
|
|
|
progress_bar.close() |
|
360
|
|
|
else: |
|
361
|
|
|
for r, (i, j) in enumerate(inds): |
|
362
|
|
|
cdm[r] = EMD(pdds[i], pdds[j], metric=metric, **kwargs) |
|
363
|
|
|
|
|
364
|
|
|
return cdm |
|
365
|
|
|
|