|
1
|
|
|
"""Calculation of isometry invariants from periodic sets.""" |
|
2
|
|
|
|
|
3
|
|
|
import warnings |
|
4
|
|
|
import collections |
|
5
|
|
|
from typing import Tuple, Union |
|
6
|
|
|
import itertools |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import numpy.typing as npt |
|
10
|
|
|
import numba |
|
11
|
|
|
from scipy.spatial.distance import pdist, squareform |
|
12
|
|
|
|
|
13
|
|
|
from ._types import FloatArray |
|
14
|
|
|
from ._nearest_neighbors import nearest_neighbors, nearest_neighbors_minval |
|
15
|
|
|
from .periodicset import PeriodicSet |
|
16
|
|
|
from .utils import diameter |
|
17
|
|
|
from .globals_ import MAX_DISORDER_CONFIGS |
|
18
|
|
|
|
|
19
|
|
|
|
|
20
|
|
|
__all__ = [ |
|
21
|
|
|
"PDD", |
|
22
|
|
|
"AMD", |
|
23
|
|
|
"ADA", |
|
24
|
|
|
"PDA", |
|
25
|
|
|
"PDD_to_AMD", |
|
26
|
|
|
"AMD_finite", |
|
27
|
|
|
"PDD_finite", |
|
28
|
|
|
"PDD_reconstructable", |
|
29
|
|
|
"AMD_estimate", |
|
30
|
|
|
] |
|
31
|
|
|
|
|
32
|
|
|
|
|
33
|
|
|
def PDD( |
|
34
|
|
|
pset: PeriodicSet, |
|
35
|
|
|
k: int, |
|
36
|
|
|
lexsort: bool = True, |
|
37
|
|
|
collapse: bool = True, |
|
38
|
|
|
collapse_tol: float = 1e-4, |
|
39
|
|
|
return_row_data: bool = False, |
|
40
|
|
|
) -> Union[FloatArray, Tuple[FloatArray, list]]: |
|
41
|
|
|
"""Return the pointwise distance distribution (PDD) of a periodic |
|
42
|
|
|
set (usually representing a crystal). |
|
43
|
|
|
|
|
44
|
|
|
The PDD is a geometry based descriptor independent of choice of |
|
45
|
|
|
motif and unit cell. It is a matrix with each row corresponding to a |
|
46
|
|
|
point in the motif, starting with a weight followed by distances to |
|
47
|
|
|
the k nearest neighbors of the point. |
|
48
|
|
|
|
|
49
|
|
|
Parameters |
|
50
|
|
|
---------- |
|
51
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
52
|
|
|
A periodic set (crystal). |
|
53
|
|
|
k : int |
|
54
|
|
|
Number of neighbors considered for each point in a unit cell. |
|
55
|
|
|
The output has k + 1 columns with the first column containing |
|
56
|
|
|
weights. |
|
57
|
|
|
lexsort : bool, default True |
|
58
|
|
|
Lexicographically order rows. |
|
59
|
|
|
collapse: bool, default True |
|
60
|
|
|
Collapse duplicate rows (within ``collapse_tol`` in the |
|
61
|
|
|
Chebyshev metric). |
|
62
|
|
|
collapse_tol: float, default 1e-4 |
|
63
|
|
|
If two rows are closer than ``collapse_tol`` in the Chebyshev |
|
64
|
|
|
metric, they are merged and weights are given to rows in |
|
65
|
|
|
proportion to their frequency. |
|
66
|
|
|
return_row_data: bool, default False |
|
67
|
|
|
Return a tuple ``(pdd, groups)`` where ``groups`` contains |
|
68
|
|
|
information about which rows in ``pdd`` correspond to which |
|
69
|
|
|
points. If ``pset.asym_unit`` is None, then ``groups[i]`` |
|
70
|
|
|
contains indices of points in ``pset.motif`` corresponding to |
|
71
|
|
|
``pdd[i]``. Otherwise, PDD rows correspond to points in the |
|
72
|
|
|
asymmetric unit, and ``groups[i]`` contains indices pointing to |
|
73
|
|
|
``pset.asym_unit``. |
|
74
|
|
|
|
|
75
|
|
|
Returns |
|
76
|
|
|
------- |
|
77
|
|
|
pdd : :class:`numpy.ndarray` |
|
78
|
|
|
The PDD of ``pset``, a :class:`numpy.ndarray` with ``k+1`` |
|
79
|
|
|
columns. If ``return_row_data`` is True, returns a tuple |
|
80
|
|
|
(:class:`numpy.ndarray`, list). |
|
81
|
|
|
|
|
82
|
|
|
Examples |
|
83
|
|
|
-------- |
|
84
|
|
|
Make list of PDDs with ``k=100`` for crystals in data.cif:: |
|
85
|
|
|
|
|
86
|
|
|
pdds = [] |
|
87
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
|
88
|
|
|
pdd = amd.PDD(periodic_set, 100) |
|
89
|
|
|
pdds.append(pdd) |
|
90
|
|
|
|
|
91
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode |
|
92
|
|
|
families (requires csd-python-api):: |
|
93
|
|
|
|
|
94
|
|
|
pdds = [] |
|
95
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
|
96
|
|
|
pdds.append(amd.PDD(periodic_set, 10)) |
|
97
|
|
|
|
|
98
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
|
99
|
|
|
|
|
100
|
|
|
# simple cubic lattice |
|
101
|
|
|
motif = np.array([[0,0,0]]) |
|
102
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
|
103
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
|
104
|
|
|
cubic_pdd = amd.PDD(periodic_set, 100) |
|
105
|
|
|
""" |
|
106
|
|
|
|
|
107
|
|
|
if not isinstance(pset, PeriodicSet): |
|
108
|
|
|
raise ValueError( |
|
109
|
|
|
f"Expected {PeriodicSet.__name__}, got {pset.__class__.__name__}" |
|
110
|
|
|
) |
|
111
|
|
|
|
|
112
|
|
|
weights, dists, groups = _PDD( |
|
113
|
|
|
pset, k, lexsort=lexsort, collapse=collapse, collapse_tol=collapse_tol |
|
114
|
|
|
) |
|
115
|
|
|
pdd = np.empty(shape=(len(dists), k + 1), dtype=np.float64) |
|
116
|
|
|
pdd[:, 0] = weights |
|
117
|
|
|
pdd[:, 1:] = dists |
|
118
|
|
|
if return_row_data: |
|
119
|
|
|
return pdd, groups |
|
120
|
|
|
return pdd |
|
121
|
|
|
|
|
122
|
|
|
|
|
123
|
|
|
def _PDD( |
|
124
|
|
|
pset: PeriodicSet, |
|
125
|
|
|
k: int, |
|
126
|
|
|
lexsort: bool = True, |
|
127
|
|
|
collapse: bool = True, |
|
128
|
|
|
collapse_tol: float = 1e-4, |
|
129
|
|
|
) -> Tuple[FloatArray, FloatArray, list[list[int]]]: |
|
130
|
|
|
"""See PDD() for documentation. This core function always returns a |
|
131
|
|
|
tuple (weights, dists, groups), with weights and dists to be merged |
|
132
|
|
|
by PDD() and groups to be optionally returned. |
|
133
|
|
|
""" |
|
134
|
|
|
|
|
135
|
|
|
asym_unit = pset.motif[pset.asym_unit] |
|
136
|
|
|
weights = pset.multiplicities / pset.motif.shape[0] |
|
137
|
|
|
|
|
138
|
|
|
# Disordered structures |
|
139
|
|
|
subs_disorder_info = {} # i: [inds masked] where i is sub disordered |
|
140
|
|
|
|
|
141
|
|
|
if pset.disorder: |
|
142
|
|
|
# Gather which disorder assemblies must be considered |
|
143
|
|
|
_asym_mask = np.full((asym_unit.shape[0], ), fill_value=True) |
|
144
|
|
|
asm_sizes = {} |
|
145
|
|
|
for i, asm in enumerate(pset.disorder): |
|
146
|
|
|
grps = asm.groups |
|
147
|
|
|
|
|
148
|
|
|
# Ignore assmeblies with 1 group |
|
149
|
|
|
if len(grps) < 2: |
|
150
|
|
|
continue |
|
151
|
|
|
|
|
152
|
|
|
# For substitutional disorder, mask all but one atom |
|
153
|
|
|
elif asm.is_substitutional: |
|
154
|
|
|
mask_inds = [grps[j].indices[0] for j in range(1, len(grps))] |
|
155
|
|
|
keep = grps[0].indices[0] |
|
156
|
|
|
subs_disorder_info[keep] = mask_inds |
|
157
|
|
|
_asym_mask[mask_inds] = False |
|
158
|
|
|
|
|
159
|
|
|
else: |
|
160
|
|
|
asm_sizes[i] = len(grps) |
|
161
|
|
|
|
|
162
|
|
|
asm_sizes_arr = np.array(list(asm_sizes.values())) |
|
163
|
|
|
if _array_product_exceeds(asm_sizes_arr, MAX_DISORDER_CONFIGS): |
|
164
|
|
|
warnings.warn( |
|
165
|
|
|
f"Disorder configs exceeds limit " |
|
166
|
|
|
f"amd.globals_.MAX_DISORDER_CONFIGS={MAX_DISORDER_CONFIGS}, " |
|
167
|
|
|
"defaulting to majority occupancy config" |
|
168
|
|
|
) |
|
169
|
|
|
configs = [[]] |
|
170
|
|
|
for asm in pset.disorder: |
|
171
|
|
|
i, _ = max(enumerate(asm.groups), key=lambda g: g[1].occupancy) |
|
172
|
|
|
configs[0].append(i) |
|
173
|
|
|
else: |
|
174
|
|
|
configs = itertools.product(*(range(t) for t in asm_sizes.values())) |
|
|
|
|
|
|
175
|
|
|
|
|
176
|
|
|
# One PDD for each disorder configuration |
|
177
|
|
|
dists_list, inds_list = [], [] |
|
178
|
|
|
for config_inds in configs: |
|
179
|
|
|
|
|
180
|
|
|
# Mask groups not selected |
|
181
|
|
|
asym_mask = _asym_mask.copy() |
|
182
|
|
|
motif_mask = np.full((pset.motif.shape[0], ), fill_value=True) |
|
183
|
|
|
for i, asm_ind in enumerate(asm_sizes.keys()): |
|
184
|
|
|
for j, grp in enumerate(pset.disorder[asm_ind].groups): |
|
185
|
|
|
if j != config_inds[i]: |
|
186
|
|
|
for t in grp.indices: |
|
187
|
|
|
asym_mask[t] = False |
|
188
|
|
|
m_i = pset.asym_unit[t] |
|
189
|
|
|
mul = pset.multiplicities[t] |
|
190
|
|
|
motif_mask[m_i : m_i + mul] = False |
|
191
|
|
|
|
|
192
|
|
|
dists = nearest_neighbors( |
|
193
|
|
|
pset.motif[motif_mask], pset.cell, asym_unit[asym_mask], k + 1 |
|
194
|
|
|
) |
|
195
|
|
|
dists_list.append(dists[:, 1:]) |
|
196
|
|
|
inds_list.append(np.where(asym_mask)[0]) |
|
197
|
|
|
|
|
198
|
|
|
dists = np.vstack(dists_list) |
|
199
|
|
|
inds = list(np.concatenate(inds_list)) |
|
200
|
|
|
weights = np.concatenate([weights[i] for i in inds_list]) |
|
201
|
|
|
weights /= np.sum(weights) |
|
202
|
|
|
|
|
203
|
|
|
else: |
|
204
|
|
|
dists = nearest_neighbors(pset.motif, pset.cell, asym_unit, k + 1) |
|
205
|
|
|
dists = dists[:, 1:] |
|
206
|
|
|
inds = list(range(len(dists))) |
|
207
|
|
|
|
|
208
|
|
|
# Collapse rows within tolerance |
|
209
|
|
|
groups = None |
|
210
|
|
|
if collapse: |
|
211
|
|
|
weights, dists, group_labs = _merge_pdd_rows(weights, dists, collapse_tol) |
|
212
|
|
|
if dists.shape[0] != len(group_labs): |
|
213
|
|
|
groups = [[] for _ in range(weights.shape[0])] |
|
214
|
|
|
for old_ind, new_ind in enumerate(group_labs): |
|
215
|
|
|
groups[new_ind].append(int(inds[old_ind])) |
|
216
|
|
|
|
|
217
|
|
|
if groups is None: |
|
218
|
|
|
groups = [[int(i)] for i in inds] |
|
219
|
|
|
|
|
220
|
|
|
# Add back substitutionally disordered sites to group info |
|
221
|
|
|
if subs_disorder_info: |
|
222
|
|
|
for i, masked_inds in subs_disorder_info.items(): |
|
223
|
|
|
for grp in groups: |
|
224
|
|
|
if i in grp: |
|
225
|
|
|
grp.extend(masked_inds) |
|
226
|
|
|
|
|
227
|
|
|
if lexsort: |
|
228
|
|
|
lex_ordering = np.lexsort(dists.T[::-1]) |
|
229
|
|
|
weights = weights[lex_ordering] |
|
230
|
|
|
dists = dists[lex_ordering] |
|
231
|
|
|
groups = [groups[i] for i in lex_ordering] |
|
232
|
|
|
|
|
233
|
|
|
return weights, dists, groups |
|
234
|
|
|
|
|
235
|
|
|
|
|
236
|
|
|
def AMD(pset: PeriodicSet, k: int) -> FloatArray: |
|
237
|
|
|
"""Return the average minimum distance (AMD) of a periodic set |
|
238
|
|
|
(usually representing a crystal). |
|
239
|
|
|
|
|
240
|
|
|
The AMD is the centroid or average of the PDD (pointwise distance |
|
241
|
|
|
distribution) and hence is also a independent of choice of motif and |
|
242
|
|
|
unit cell. It is a vector containing average distances from points |
|
243
|
|
|
to k neighbouring points. |
|
244
|
|
|
|
|
245
|
|
|
Parameters |
|
246
|
|
|
---------- |
|
247
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
248
|
|
|
A periodic set (crystal). |
|
249
|
|
|
k : int |
|
250
|
|
|
Number of neighbors considered for each point in a unit cell. |
|
251
|
|
|
|
|
252
|
|
|
Returns |
|
253
|
|
|
------- |
|
254
|
|
|
:class:`numpy.ndarray` |
|
255
|
|
|
The AMD of ``pset``, a :class:`numpy.ndarray` shape ``(k, )``. |
|
256
|
|
|
|
|
257
|
|
|
Examples |
|
258
|
|
|
-------- |
|
259
|
|
|
Make list of AMDs with k = 100 for crystals in data.cif:: |
|
260
|
|
|
|
|
261
|
|
|
amds = [] |
|
262
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
|
263
|
|
|
amds.append(amd.AMD(periodic_set, 100)) |
|
264
|
|
|
|
|
265
|
|
|
Make list of AMDs with k = 10 for crystals in these CSD refcode families:: |
|
266
|
|
|
|
|
267
|
|
|
amds = [] |
|
268
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
|
269
|
|
|
amds.append(amd.AMD(periodic_set, 10)) |
|
270
|
|
|
|
|
271
|
|
|
Manually create a periodic set as a tuple (motif, cell):: |
|
272
|
|
|
|
|
273
|
|
|
# simple cubic lattice |
|
274
|
|
|
motif = np.array([[0,0,0]]) |
|
275
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
|
276
|
|
|
periodic_set = amd.PeriodicSet(motif, cell) |
|
277
|
|
|
cubic_amd = amd.AMD(periodic_set, 100) |
|
278
|
|
|
""" |
|
279
|
|
|
weights, dists, _ = _PDD(pset, k, lexsort=False, collapse=False) |
|
280
|
|
|
return np.average(dists, weights=weights, axis=0) |
|
281
|
|
|
|
|
282
|
|
|
|
|
283
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
284
|
|
|
def PDD_to_AMD(pdd: FloatArray) -> FloatArray: |
|
285
|
|
|
"""Calculate an AMD from a PDD, faster than computing both from |
|
286
|
|
|
scratch. |
|
287
|
|
|
|
|
288
|
|
|
Parameters |
|
289
|
|
|
---------- |
|
290
|
|
|
pdd : :class:`numpy.ndarray` |
|
291
|
|
|
The PDD of a periodic set as given by :class:`PDD() <.PDD>`. |
|
292
|
|
|
Returns |
|
293
|
|
|
------- |
|
294
|
|
|
:class:`numpy.ndarray` |
|
295
|
|
|
The AMD of the periodic set, so that |
|
296
|
|
|
``amd.PDD_to_AMD(amd.PDD(pset)) == amd.AMD(pset)`` |
|
297
|
|
|
""" |
|
298
|
|
|
|
|
299
|
|
|
amd_ = np.empty((pdd.shape[-1] - 1,), dtype=np.float64) |
|
300
|
|
|
for col in range(amd_.shape[0]): |
|
301
|
|
|
v = 0 |
|
302
|
|
|
for row in range(pdd.shape[0]): |
|
303
|
|
|
v += pdd[row, 0] * pdd[row, col + 1] |
|
304
|
|
|
amd_[col] = v |
|
305
|
|
|
return amd_ |
|
306
|
|
|
|
|
307
|
|
|
|
|
308
|
|
|
def AMD_finite(motif: FloatArray) -> FloatArray: |
|
309
|
|
|
"""Return the AMD of a finite m-point set up to k = m - 1. |
|
310
|
|
|
|
|
311
|
|
|
Parameters |
|
312
|
|
|
---------- |
|
313
|
|
|
motif : :class:`numpy.ndarray` |
|
314
|
|
|
Collection of points. |
|
315
|
|
|
|
|
316
|
|
|
Returns |
|
317
|
|
|
------- |
|
318
|
|
|
:class:`numpy.ndarray` |
|
319
|
|
|
The AMD of ``motif``, a vector shape ``(motif.shape[0] - 1, )``. |
|
320
|
|
|
|
|
321
|
|
|
Examples |
|
322
|
|
|
-------- |
|
323
|
|
|
The (L-infinity) AMD distance between finite trapezium and kite |
|
324
|
|
|
point sets, which have the same list of inter-point distances:: |
|
325
|
|
|
|
|
326
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
|
327
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
|
328
|
|
|
|
|
329
|
|
|
trap_amd = amd.AMD_finite(trapezium) |
|
330
|
|
|
kite_amd = amd.AMD_finite(kite) |
|
331
|
|
|
|
|
332
|
|
|
l_inf_dist = np.amax(np.abs(trap_amd - kite_amd)) |
|
333
|
|
|
""" |
|
334
|
|
|
|
|
335
|
|
|
dm = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
|
336
|
|
|
return np.average(dm, axis=0) |
|
337
|
|
|
|
|
338
|
|
|
|
|
339
|
|
|
def PDD_finite( |
|
340
|
|
|
motif: FloatArray, |
|
341
|
|
|
lexsort: bool = True, |
|
342
|
|
|
collapse: bool = True, |
|
343
|
|
|
collapse_tol: float = 1e-4, |
|
344
|
|
|
return_row_data: bool = False, |
|
345
|
|
|
) -> Union[FloatArray, Tuple[FloatArray, list]]: |
|
346
|
|
|
"""Return the PDD of a finite m-point set up to k = m - 1. |
|
347
|
|
|
|
|
348
|
|
|
Parameters |
|
349
|
|
|
---------- |
|
350
|
|
|
motif : :class:`numpy.ndarray` |
|
351
|
|
|
Collection of points. |
|
352
|
|
|
lexsort : bool, default True |
|
353
|
|
|
Lexicographically order rows. |
|
354
|
|
|
collapse: bool, default True |
|
355
|
|
|
Collapse duplicate rows (within ``collapse_tol`` in the |
|
356
|
|
|
Chebyshev metric). |
|
357
|
|
|
collapse_tol: float, default 1e-4 |
|
358
|
|
|
If two rows are closer than ``collapse_tol`` in the Chebyshev |
|
359
|
|
|
metric, they are merged and weights are given to rows in |
|
360
|
|
|
proportion to their frequency. |
|
361
|
|
|
return_row_data: bool, default False |
|
362
|
|
|
If True, return a tuple ``(pdd, groups)`` where ``groups[i]`` |
|
363
|
|
|
contains indices of points in ``motif`` corresponding to |
|
364
|
|
|
``pdd[i]``. |
|
365
|
|
|
|
|
366
|
|
|
Returns |
|
367
|
|
|
------- |
|
368
|
|
|
pdd : :class:`numpy.ndarray` |
|
369
|
|
|
The PDD of ``motif``, a :class:`numpy.ndarray` with ``k+1`` |
|
370
|
|
|
columns. If ``return_row_data`` is True, returns a tuple |
|
371
|
|
|
(:class:`numpy.ndarray`, list). |
|
372
|
|
|
|
|
373
|
|
|
Examples |
|
374
|
|
|
-------- |
|
375
|
|
|
The PDD distance between finite trapezium and kite point sets, which |
|
376
|
|
|
have the same list of inter-point distances:: |
|
377
|
|
|
|
|
378
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
|
379
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
|
380
|
|
|
|
|
381
|
|
|
trap_pdd = amd.PDD_finite(trapezium) |
|
382
|
|
|
kite_pdd = amd.PDD_finite(kite) |
|
383
|
|
|
|
|
384
|
|
|
dist = amd.EMD(trap_pdd, kite_pdd) |
|
385
|
|
|
""" |
|
386
|
|
|
|
|
387
|
|
|
m = motif.shape[0] |
|
388
|
|
|
dists = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
|
389
|
|
|
weights = np.full((m,), 1 / m) |
|
390
|
|
|
groups = [[i] for i in range(len(dists))] |
|
391
|
|
|
|
|
392
|
|
|
# TODO: use _merge_pdd_rows |
|
393
|
|
|
if collapse: |
|
394
|
|
|
overlapping = pdist(dists, metric="chebyshev") <= collapse_tol |
|
395
|
|
|
if overlapping.any(): |
|
396
|
|
|
groups = _collapse_into_groups(overlapping) |
|
397
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
|
398
|
|
|
dists = np.array( |
|
399
|
|
|
[np.average(dists[group], axis=0) for group in groups], dtype=np.float64 |
|
400
|
|
|
) |
|
401
|
|
|
|
|
402
|
|
|
pdd = np.empty(shape=(len(weights), m), dtype=np.float64) |
|
403
|
|
|
|
|
404
|
|
|
if lexsort: |
|
405
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
|
406
|
|
|
pdd[:, 0] = weights[lex_ordering] |
|
407
|
|
|
pdd[:, 1:] = dists[lex_ordering] |
|
408
|
|
|
if return_row_data: |
|
409
|
|
|
groups = [groups[i] for i in lex_ordering] |
|
410
|
|
|
else: |
|
411
|
|
|
pdd[:, 0] = weights |
|
412
|
|
|
pdd[:, 1:] = dists |
|
413
|
|
|
|
|
414
|
|
|
if return_row_data: |
|
415
|
|
|
return pdd, groups |
|
416
|
|
|
return pdd |
|
417
|
|
|
|
|
418
|
|
|
|
|
419
|
|
|
def PDD_reconstructable(pset: PeriodicSet, lexsort: bool = True) -> FloatArray: |
|
420
|
|
|
"""Return the PDD of a periodic set with ``k`` (number of columns) |
|
421
|
|
|
large enough such that the periodic set can be reconstructed from |
|
422
|
|
|
the PDD with :func:`amd.reconstruct.reconstruct`. Does NOT return |
|
423
|
|
|
weights or collapse rows. |
|
424
|
|
|
|
|
425
|
|
|
Parameters |
|
426
|
|
|
---------- |
|
427
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
428
|
|
|
A periodic set (crystal). |
|
429
|
|
|
lexsort : bool, default True |
|
430
|
|
|
Lexicographically order rows. |
|
431
|
|
|
|
|
432
|
|
|
Returns |
|
433
|
|
|
------- |
|
434
|
|
|
pdd : :class:`numpy.ndarray` |
|
435
|
|
|
The PDD of ``pset`` with enough columns to reconstruct ``pset`` |
|
436
|
|
|
using :func:`amd.reconstruct.reconstruct`. |
|
437
|
|
|
""" |
|
438
|
|
|
|
|
439
|
|
|
if not isinstance(pset, PeriodicSet): |
|
440
|
|
|
raise ValueError( |
|
441
|
|
|
f"Expected {PeriodicSet.__name__}, got {pset.__class__.__name__}" |
|
442
|
|
|
) |
|
443
|
|
|
|
|
444
|
|
|
if pset.ndim not in (2, 3): |
|
445
|
|
|
raise ValueError( |
|
446
|
|
|
"Reconstructing from PDD is only possible for 2 and 3 dimensions." |
|
447
|
|
|
) |
|
448
|
|
|
min_val = diameter(pset.cell) * 2 |
|
449
|
|
|
pdd, _, _ = nearest_neighbors_minval(pset.motif, pset.cell, min_val) |
|
450
|
|
|
if lexsort: |
|
451
|
|
|
lex_ordering = np.lexsort(pdd.T[::-1]) |
|
452
|
|
|
pdd = pdd[lex_ordering] |
|
453
|
|
|
return pdd |
|
454
|
|
|
|
|
455
|
|
|
|
|
456
|
|
|
def AMD_estimate(pset: PeriodicSet, k: int) -> FloatArray: |
|
457
|
|
|
r"""Calculate an estimate of :class:`AMD <.AMD>` based on the |
|
458
|
|
|
:class:`PPC <.periodicset.PeriodicSet.PPC>` of ``pset``. |
|
459
|
|
|
|
|
460
|
|
|
Parameters |
|
461
|
|
|
---------- |
|
462
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
463
|
|
|
A periodic set (crystal). |
|
464
|
|
|
|
|
465
|
|
|
Returns |
|
466
|
|
|
------- |
|
467
|
|
|
amd_est : :class:`numpy.ndarray` |
|
468
|
|
|
An array shape (k, ), where ``amd_est[i]`` |
|
469
|
|
|
:math:`= \text{PPC} \sqrt[n]{k}` in n dimensions, whose ratio |
|
470
|
|
|
with AMD has been shown to converge to 1. |
|
471
|
|
|
""" |
|
472
|
|
|
|
|
473
|
|
|
if not isinstance(pset, PeriodicSet): |
|
474
|
|
|
raise ValueError( |
|
475
|
|
|
f"Expected {PeriodicSet.__name__}, got {pset.__class__.__name__}" |
|
476
|
|
|
) |
|
477
|
|
|
arange = np.arange(1, k + 1, dtype=np.float64) |
|
478
|
|
|
return pset.PPC() * np.power(arange, 1.0 / pset.ndim) |
|
479
|
|
|
|
|
480
|
|
|
|
|
481
|
|
|
def PDA( |
|
482
|
|
|
pset: PeriodicSet, |
|
483
|
|
|
k: int, |
|
484
|
|
|
lexsort: bool = True, |
|
485
|
|
|
collapse: bool = True, |
|
486
|
|
|
collapse_tol: float = 1e-4, |
|
487
|
|
|
return_row_data: bool = False, |
|
488
|
|
|
) -> Union[FloatArray, Tuple[FloatArray, list]]: |
|
489
|
|
|
"""Return the pointwise deviation from asymptotic distribution, |
|
490
|
|
|
essentially a normalisation of the pointwise distance distribution |
|
491
|
|
|
of ``pset``. The PDA records how much the distances in the PDD |
|
492
|
|
|
deviate from what is expected based on the asymptotic estimate. |
|
493
|
|
|
|
|
494
|
|
|
The PDD of ``pset`` is a geometry based descriptor independent of |
|
495
|
|
|
choice of motif and unit cell. Its asymptotic behaviour is well |
|
496
|
|
|
understood and depends on the point density of the periodic set. |
|
497
|
|
|
The PDA is the difference between the PDD and its asymptotic curve. |
|
498
|
|
|
|
|
499
|
|
|
Parameters |
|
500
|
|
|
---------- |
|
501
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
502
|
|
|
A periodic set (crystal). |
|
503
|
|
|
k : int |
|
504
|
|
|
Number of neighbors considered for each point in a unit cell. |
|
505
|
|
|
The output has k + 1 columns with the first column containing |
|
506
|
|
|
weights. |
|
507
|
|
|
lexsort : bool, default True |
|
508
|
|
|
Lexicographically order rows. |
|
509
|
|
|
collapse: bool, default True |
|
510
|
|
|
Collapse duplicate rows (within ``collapse_tol`` in the |
|
511
|
|
|
Chebyshev metric). |
|
512
|
|
|
collapse_tol: float, default 1e-4 |
|
513
|
|
|
If two rows are closer than ``collapse_tol`` in the Chebyshev |
|
514
|
|
|
metric, they are merged and weights are given to rows in |
|
515
|
|
|
proportion to their frequency. |
|
516
|
|
|
return_row_data: bool, default False |
|
517
|
|
|
Return a tuple ``(pda, groups)`` where ``groups`` contains |
|
518
|
|
|
information about which rows in ``pda`` correspond to which |
|
519
|
|
|
points. If ``pset.asym_unit`` is None, then ``groups[i]`` |
|
520
|
|
|
contains indices of points in ``pset.motif`` corresponding to |
|
521
|
|
|
``pda[i]``. Otherwise, PDA rows correspond to points in the |
|
522
|
|
|
asymmetric unit, and ``groups[i]`` contains indices pointing to |
|
523
|
|
|
``pset.asym_unit``. |
|
524
|
|
|
|
|
525
|
|
|
Returns |
|
526
|
|
|
------- |
|
527
|
|
|
pda : :class:`numpy.ndarray` |
|
528
|
|
|
The PDA of ``pset``, a :class:`numpy.ndarray` with ``k+1`` |
|
529
|
|
|
columns. If ``return_row_data`` is True, returns a tuple |
|
530
|
|
|
(:class:`numpy.ndarray`, list). |
|
531
|
|
|
""" |
|
532
|
|
|
pdd, grps = PDD( |
|
533
|
|
|
pset, |
|
534
|
|
|
k, |
|
535
|
|
|
collapse=collapse, |
|
536
|
|
|
collapse_tol=collapse_tol, |
|
537
|
|
|
lexsort=lexsort, |
|
538
|
|
|
return_row_data=True, |
|
539
|
|
|
) |
|
540
|
|
|
pdd[:, 1:] -= AMD_estimate(pset, k) |
|
541
|
|
|
if return_row_data: |
|
542
|
|
|
return pdd, grps |
|
543
|
|
|
return pdd |
|
544
|
|
|
|
|
545
|
|
|
|
|
546
|
|
|
def ADA(pset: PeriodicSet, k: int) -> FloatArray: |
|
547
|
|
|
"""Return the average deviation from asymptotic, essentially a |
|
548
|
|
|
normalisation of the average minimum distance of ``pset``. The ADA |
|
549
|
|
|
records how much the distances in the AMD deviate from what is |
|
550
|
|
|
expected based on the asymptotic estimate. |
|
551
|
|
|
|
|
552
|
|
|
The AMD of ``pset`` is a geometry based descriptor independent of |
|
553
|
|
|
choice of motif and unit cell. Its asymptotic behaviour is well |
|
554
|
|
|
understood and depends on the point density of the periodic set. |
|
555
|
|
|
The ADA is the difference between the AMD and its asymptotic curve. |
|
556
|
|
|
|
|
557
|
|
|
Parameters |
|
558
|
|
|
---------- |
|
559
|
|
|
pset : :class:`amd.PeriodicSet <.periodicset.PeriodicSet>` |
|
560
|
|
|
A periodic set (crystal). |
|
561
|
|
|
k : int |
|
562
|
|
|
Number of neighbors considered for each point in a unit cell. |
|
563
|
|
|
|
|
564
|
|
|
Returns |
|
565
|
|
|
------- |
|
566
|
|
|
:class:`numpy.ndarray` |
|
567
|
|
|
The ADA of ``pset``, a :class:`numpy.ndarray` shape ``(k, )``. |
|
568
|
|
|
""" |
|
569
|
|
|
return AMD(pset, k) - AMD_estimate(pset, k) |
|
570
|
|
|
|
|
571
|
|
|
|
|
572
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
573
|
|
|
def _array_product_exceeds(values, limit): |
|
574
|
|
|
"""Returns False if np.prod(values) > limit.""" |
|
575
|
|
|
tot = 1 |
|
576
|
|
|
for i in range(len(values)): |
|
577
|
|
|
tot *= values[i] |
|
578
|
|
|
if tot > limit: |
|
579
|
|
|
return True |
|
580
|
|
|
return False |
|
581
|
|
|
|
|
582
|
|
|
|
|
583
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
584
|
|
|
def _merge_pdd_rows(weights, dists, collapse_tol): |
|
585
|
|
|
"""Collpases weights & rows of a PDD, and return an array of group |
|
586
|
|
|
labels (new indices of old rows).""" |
|
587
|
|
|
|
|
588
|
|
|
n, k = dists.shape |
|
589
|
|
|
group_labels = np.empty((n,), dtype=np.int64) |
|
590
|
|
|
done = set() |
|
591
|
|
|
group = 0 |
|
592
|
|
|
|
|
593
|
|
|
for i in range(n): |
|
594
|
|
|
if i in done: |
|
595
|
|
|
continue |
|
596
|
|
|
|
|
597
|
|
|
group_labels[i] = group |
|
598
|
|
|
|
|
599
|
|
|
for j in range(i + 1, n): |
|
600
|
|
|
if j in done: |
|
601
|
|
|
continue |
|
602
|
|
|
|
|
603
|
|
|
grouped = True |
|
604
|
|
|
for i_ in range(k): |
|
605
|
|
|
v = np.abs(dists[i, i_] - dists[j, i_]) |
|
606
|
|
|
if v > collapse_tol: |
|
607
|
|
|
grouped = False |
|
608
|
|
|
break |
|
609
|
|
|
|
|
610
|
|
|
if grouped: |
|
611
|
|
|
group_labels[j] = group |
|
612
|
|
|
done.add(j) |
|
613
|
|
|
|
|
614
|
|
|
group += 1 |
|
615
|
|
|
|
|
616
|
|
|
if group == n: |
|
617
|
|
|
return weights, dists, group_labels |
|
618
|
|
|
|
|
619
|
|
|
weights_ = np.zeros((group,), dtype=np.float64) |
|
620
|
|
|
dists_ = np.zeros((group, k), dtype=np.float64) |
|
621
|
|
|
group_counts = np.zeros((group,), dtype=np.int64) |
|
622
|
|
|
|
|
623
|
|
|
for i in range(n): |
|
624
|
|
|
row = group_labels[i] |
|
625
|
|
|
weights_[row] += weights[i] |
|
626
|
|
|
dists_[row] += dists[i] |
|
627
|
|
|
group_counts[row] += 1 |
|
628
|
|
|
|
|
629
|
|
|
for i in range(group): |
|
630
|
|
|
dists_[i] /= group_counts[i] |
|
631
|
|
|
|
|
632
|
|
|
return weights_, dists_, group_labels |
|
633
|
|
|
|
|
634
|
|
|
|
|
635
|
|
|
def _collapse_into_groups(overlapping: npt.NDArray[np.bool_]) -> list: |
|
636
|
|
|
"""Return a list of groups of indices where all indices in the same |
|
637
|
|
|
group overlap. ``overlapping`` indicates for each pair of items in a |
|
638
|
|
|
set whether or not the items overlap, in the shape of a condensed |
|
639
|
|
|
distance matrix. |
|
640
|
|
|
""" |
|
641
|
|
|
|
|
642
|
|
|
overlapping = squareform(overlapping) |
|
643
|
|
|
group_nums = {} |
|
644
|
|
|
group = 0 |
|
645
|
|
|
for i, row in enumerate(overlapping): |
|
646
|
|
|
if i not in group_nums: |
|
647
|
|
|
group_nums[i] = group |
|
648
|
|
|
group += 1 |
|
649
|
|
|
for j in np.argwhere(row).T[0]: |
|
650
|
|
|
if j not in group_nums: |
|
651
|
|
|
group_nums[j] = group_nums[i] |
|
652
|
|
|
|
|
653
|
|
|
groups = collections.defaultdict(list) |
|
654
|
|
|
for row_ind, group_num in sorted(group_nums.items()): |
|
655
|
|
|
groups[group_num].append(row_ind) |
|
656
|
|
|
|
|
657
|
|
|
return list(groups.values()) |
|
658
|
|
|
|