|
1
|
|
|
"""Implements core function nearest_neighbors used for AMD and PDD |
|
2
|
|
|
calculations. |
|
3
|
|
|
""" |
|
4
|
|
|
|
|
5
|
|
|
from typing import Tuple, Iterable, Iterator, Callable, List |
|
6
|
|
|
from itertools import product, tee, accumulate |
|
7
|
|
|
import functools |
|
8
|
|
|
|
|
9
|
|
|
import numba |
|
10
|
|
|
import numpy as np |
|
11
|
|
|
|
|
12
|
|
|
from ._types import FloatArray, UIntArray |
|
13
|
|
|
|
|
14
|
|
|
__all__ = ["nearest_neighbors", "nearest_neighbors_data", "nearest_neighbors_minval"] |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
def nearest_neighbors( |
|
18
|
|
|
motif: FloatArray, cell: FloatArray, x: FloatArray, k: int |
|
19
|
|
|
) -> FloatArray: |
|
20
|
|
|
"""Find distances to ``k`` nearest neighbors in a periodic set for |
|
21
|
|
|
each point in ``x``. |
|
22
|
|
|
|
|
23
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
|
24
|
|
|
set of points ``x`` and an integer ``k``, find distances to the |
|
25
|
|
|
``k`` nearest neighbors in the periodic set for all points in |
|
26
|
|
|
``x``. Returns an array with shape ``(x.shape[0], k)`` of distances |
|
27
|
|
|
to the neighbors. This function only returns distances, see also |
|
28
|
|
|
``nearest_neighbors_data()`` which also returns indices of those |
|
29
|
|
|
points which are neighbors. |
|
30
|
|
|
|
|
31
|
|
|
Parameters |
|
32
|
|
|
---------- |
|
33
|
|
|
motif : :class:`numpy.ndarray` |
|
34
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
|
35
|
|
|
cell : :class:`numpy.ndarray` |
|
36
|
|
|
The unit cell as a square array, shape (dims, dims). |
|
37
|
|
|
x : :class:`numpy.ndarray` |
|
38
|
|
|
Array of points to query for neighbors. For isometry invariants |
|
39
|
|
|
of crystals this is typically the asymmetric unit. |
|
40
|
|
|
k : int |
|
41
|
|
|
Number of nearest neighbors to find for each point in ``x``. |
|
42
|
|
|
|
|
43
|
|
|
Returns |
|
44
|
|
|
------- |
|
45
|
|
|
dists : numpy.ndarray |
|
46
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
|
47
|
|
|
``x`` to their ``k`` nearest neighbors in the periodic set in |
|
48
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
|
49
|
|
|
n-th nearest neighbor in the periodic set. |
|
50
|
|
|
""" |
|
51
|
|
|
|
|
52
|
|
|
m, dims = motif.shape |
|
53
|
|
|
|
|
54
|
|
|
# Get an initial collection of points and a generator for more |
|
55
|
|
|
int_lattice, int_lat_generator = _integer_lattice_batches(dims, m, k) |
|
56
|
|
|
cloud = _lattice_to_cloud(motif, int_lattice @ cell) |
|
57
|
|
|
|
|
58
|
|
|
# Squared distances to k nearest neighbors |
|
59
|
|
|
sqdists = _cdist_sqeulcidean(x, cloud) |
|
60
|
|
|
motif_diam = np.sqrt(sqdists[:, :m].max()) |
|
61
|
|
|
sqdists.partition(k - 1) |
|
62
|
|
|
sqdists = sqdists[:, :k] |
|
63
|
|
|
sqdists.sort() |
|
64
|
|
|
|
|
65
|
|
|
# If a lattice point l has |l| >= max|p-p'| + max_d for p ∈ x, p' ∈ motif |
|
66
|
|
|
# then |p-(l+p')| >= max_d for all p, p' and l can be discarded. |
|
67
|
|
|
max_sqd = sqdists[:, -1].max() |
|
68
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
|
69
|
|
|
|
|
70
|
|
|
while True: |
|
71
|
|
|
# Get next layer of lattice and prune distant lattice points |
|
72
|
|
|
lattice = next(int_lat_generator) @ cell |
|
73
|
|
|
|
|
74
|
|
|
lattice = lattice[_where_sq_sum_lt_bound(lattice, bound)] |
|
75
|
|
|
if lattice.size == 0: # None are close enough |
|
76
|
|
|
break |
|
77
|
|
|
|
|
78
|
|
|
# Squared distances to new points |
|
79
|
|
|
cloud = _lattice_to_cloud(motif, lattice) |
|
80
|
|
|
sqdists_ = _cdist_sqeulcidean(x, cloud) |
|
81
|
|
|
where_close = (sqdists_ < max_sqd).any(axis=0) |
|
82
|
|
|
if not np.any(where_close): # None are close enough |
|
83
|
|
|
break |
|
84
|
|
|
|
|
85
|
|
|
# Squared distances to up to k nearest new points |
|
86
|
|
|
sqdists_ = sqdists_[:, where_close] |
|
87
|
|
|
if sqdists_.shape[-1] > k: |
|
88
|
|
|
sqdists_.partition(k - 1) |
|
89
|
|
|
sqdists_ = sqdists_[:, :k] |
|
90
|
|
|
sqdists_.sort() |
|
91
|
|
|
|
|
92
|
|
|
# Merge existing and new distances |
|
93
|
|
|
sqdists = _merge_sorted_arrays(sqdists, sqdists_) |
|
94
|
|
|
max_sqd = sqdists[:, -1].max() |
|
95
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
|
96
|
|
|
|
|
97
|
|
|
return np.sqrt(sqdists) |
|
98
|
|
|
|
|
99
|
|
|
|
|
100
|
|
|
def nearest_neighbors_data( |
|
101
|
|
|
motif: FloatArray, cell: FloatArray, x: FloatArray, k: int |
|
102
|
|
|
) -> Tuple[FloatArray, FloatArray, UIntArray]: |
|
103
|
|
|
"""Find the ``k`` nearest neighbors in a periodic set for each |
|
104
|
|
|
point in ``x``, along with the point cloud generated during the |
|
105
|
|
|
search and indices of the nearest neighbors in the cloud. |
|
106
|
|
|
|
|
107
|
|
|
Note: the points in ``x`` are |
|
108
|
|
|
|
|
109
|
|
|
Given a periodic set described by ``motif`` and ``cell``, a query |
|
110
|
|
|
set of points ``x`` and an integer ``k``, find the ``k`` nearest |
|
111
|
|
|
neighbors in the periodic set for all points in ``x``. Return |
|
112
|
|
|
an array of distances to neighbors, the point cloud generated |
|
113
|
|
|
during the search and the indices of which points in the cloud are |
|
114
|
|
|
the neighbors of points in ``x``. |
|
115
|
|
|
|
|
116
|
|
|
Note: the point ``cloud[i]`` in the periodic set comes from (is |
|
117
|
|
|
translationally equivalent to) the motif point |
|
118
|
|
|
``motif[i % len(motif)]``, because points are added to ``cloud`` in |
|
119
|
|
|
batches of whole unit cells and not rearranged. |
|
120
|
|
|
|
|
121
|
|
|
Parameters |
|
122
|
|
|
---------- |
|
123
|
|
|
motif : :class:`numpy.ndarray` |
|
124
|
|
|
Cartesian coordinates of the motif, shape (no points, dims). |
|
125
|
|
|
cell : :class:`numpy.ndarray` |
|
126
|
|
|
The unit cell as a square array, shape (dims, dims). |
|
127
|
|
|
x : :class:`numpy.ndarray` |
|
128
|
|
|
Array of points to query for neighbors. For AMD/PDD invariants |
|
129
|
|
|
this is the motif, or more commonly an asymmetric unit of it. |
|
130
|
|
|
k : int |
|
131
|
|
|
Number of nearest neighbors to find for each point in ``x``. |
|
132
|
|
|
|
|
133
|
|
|
Returns |
|
134
|
|
|
------- |
|
135
|
|
|
dists : numpy.ndarray |
|
136
|
|
|
Array shape ``(x.shape[0], k)`` of distances from points in |
|
137
|
|
|
``x`` to their ``k`` nearest neighbors in the periodic set in |
|
138
|
|
|
order, e.g. ``dists[m][n]`` is the distance from ``x[m]`` to its |
|
139
|
|
|
n-th nearest neighbor in the periodic set. |
|
140
|
|
|
cloud : numpy.ndarray |
|
141
|
|
|
Collection of points in the periodic set that were generated |
|
142
|
|
|
during the search. Arranged such that cloud[i] comes from the |
|
143
|
|
|
motif point motif[i % len(motif)] by translation. |
|
144
|
|
|
inds : numpy.ndarray |
|
145
|
|
|
Array shape ``(x.shape[0], k)`` containing the indices of |
|
146
|
|
|
nearest neighbors in ``cloud``, e.g. the n-th nearest neighbor |
|
147
|
|
|
to ``x[m]`` is ``cloud[inds[m][n]]``. |
|
148
|
|
|
""" |
|
149
|
|
|
|
|
150
|
|
|
full_cloud = [] |
|
151
|
|
|
m, dims = motif.shape |
|
152
|
|
|
|
|
153
|
|
|
int_lattice, int_lat_generator = _integer_lattice_batches(dims, m, k) |
|
154
|
|
|
cloud = _lattice_to_cloud(motif, int_lattice @ cell) |
|
155
|
|
|
full_cloud.append(cloud) |
|
156
|
|
|
cloud_ind_offset = len(cloud) |
|
157
|
|
|
|
|
158
|
|
|
sqdists = _cdist_sqeulcidean(x, cloud) |
|
159
|
|
|
motif_diam = np.sqrt(sqdists[:, :m].max()) |
|
160
|
|
|
part_inds = np.argpartition(sqdists, k - 1)[:, :k] |
|
161
|
|
|
part_sqdists = np.take_along_axis(sqdists, part_inds, axis=-1)[:, :k] |
|
162
|
|
|
part_sort_inds = np.argsort(part_sqdists) |
|
163
|
|
|
inds = np.take_along_axis(part_inds, part_sort_inds, axis=-1) |
|
164
|
|
|
sqdists = np.take_along_axis(part_sqdists, part_sort_inds, axis=-1) |
|
165
|
|
|
|
|
166
|
|
|
max_sqd = sqdists[:, -1].max() |
|
167
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
|
168
|
|
|
|
|
169
|
|
|
while True: |
|
170
|
|
|
lattice = next(int_lat_generator) @ cell |
|
171
|
|
|
lattice = lattice[np.einsum("ij,ij->i", lattice, lattice) < bound] |
|
172
|
|
|
if lattice.size == 0: |
|
173
|
|
|
break |
|
174
|
|
|
|
|
175
|
|
|
cloud = _lattice_to_cloud(motif, lattice) |
|
176
|
|
|
sqdists_ = _cdist_sqeulcidean(x, cloud) |
|
177
|
|
|
close = sqdists_ < max_sqd |
|
178
|
|
|
if not np.any(close): |
|
179
|
|
|
break |
|
180
|
|
|
|
|
181
|
|
|
argpart_upto = min(k - 1, sqdists_.shape[-1] - 1) |
|
182
|
|
|
part_inds = np.argpartition(sqdists_, argpart_upto)[:, :k] |
|
183
|
|
|
part_sqdists = np.take_along_axis(sqdists_, part_inds, axis=-1)[:, :k] |
|
184
|
|
|
part_sort_inds = np.argsort(part_sqdists) |
|
185
|
|
|
inds_ = np.take_along_axis(part_inds, part_sort_inds, axis=-1) |
|
186
|
|
|
sqdists_ = np.take_along_axis(part_sqdists, part_sort_inds, axis=-1) |
|
187
|
|
|
inds_ += cloud_ind_offset |
|
188
|
|
|
cloud_ind_offset += len(cloud) |
|
189
|
|
|
full_cloud.append(cloud) |
|
190
|
|
|
|
|
191
|
|
|
sqdists, inds = _merge_sorted_arrays_and_inds(sqdists, sqdists_, inds, inds_) |
|
192
|
|
|
max_sqd = sqdists[:, -1].max() |
|
193
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
|
194
|
|
|
|
|
195
|
|
|
return np.sqrt(sqdists), np.concatenate(full_cloud), inds |
|
196
|
|
|
|
|
197
|
|
|
|
|
198
|
|
|
def _integer_lattice_batches_cache(func: Callable) -> Callable: |
|
199
|
|
|
"""Specialised cache for ``_integer_lattice_batches``. Stores layers |
|
200
|
|
|
of integer lattice points from ``_integer_lattice_generator``. |
|
201
|
|
|
How many layers are needed depends on the ratio of k to m, so this |
|
202
|
|
|
is passed to the cache. One cache is kept for each dimension. |
|
203
|
|
|
""" |
|
204
|
|
|
|
|
205
|
|
|
cache = {} # (dims, n_layers): (layers, generator) |
|
206
|
|
|
npoints_cache = {} # dims: [num points accumulated in layers 1,2,...] |
|
207
|
|
|
|
|
208
|
|
|
@functools.wraps(func) |
|
209
|
|
|
def wrapper( |
|
210
|
|
|
dims: int, m: int, k: int |
|
211
|
|
|
) -> Tuple[List[FloatArray], Iterator[FloatArray]]: |
|
212
|
|
|
if dims not in npoints_cache: |
|
|
|
|
|
|
213
|
|
|
npoints_cache[dims] = [] |
|
214
|
|
|
|
|
215
|
|
|
# Use npoints_cache to get how many layers of the lattice are needed |
|
216
|
|
|
# Delicate code; change in accordance with _integer_lattice_batches |
|
217
|
|
|
n_layers = 1 |
|
218
|
|
|
for n_points in npoints_cache[dims]: |
|
219
|
|
|
if n_points * m > k: |
|
220
|
|
|
break |
|
221
|
|
|
n_layers += 1 |
|
222
|
|
|
n_layers += 1 |
|
223
|
|
|
|
|
224
|
|
|
# Update cache and possibly npoints_cache |
|
225
|
|
|
if (dims, n_layers) not in cache: |
|
|
|
|
|
|
226
|
|
|
layers, generator = func(dims, m, k) |
|
227
|
|
|
n_layers = len(layers) |
|
228
|
|
|
# If more layers were made than seen so far, update npoints_cache |
|
229
|
|
|
if len(npoints_cache[dims]) < n_layers: |
|
230
|
|
|
npoints_cache[dims] = list(accumulate(len(i) for i in layers)) |
|
231
|
|
|
cache[(dims, n_layers)] = [np.concatenate(layers), generator] |
|
232
|
|
|
|
|
233
|
|
|
layers, generator = cache[(dims, n_layers)] |
|
234
|
|
|
cache[(dims, n_layers)][1], ret_generator = tee(generator) |
|
235
|
|
|
return layers, ret_generator |
|
236
|
|
|
|
|
237
|
|
|
return wrapper |
|
238
|
|
|
|
|
239
|
|
|
|
|
240
|
|
|
@_integer_lattice_batches_cache |
|
241
|
|
|
def _integer_lattice_batches( |
|
242
|
|
|
dims: int, m: int, k: int |
|
243
|
|
|
) -> Tuple[List[FloatArray], Iterator[FloatArray]]: |
|
244
|
|
|
"""Return an initial batch of integer lattice points (number |
|
245
|
|
|
according to k & m) and a generator for more distant points. |
|
246
|
|
|
|
|
247
|
|
|
Parameters |
|
248
|
|
|
---------- |
|
249
|
|
|
dims : int |
|
250
|
|
|
The dimension of Euclidean space the lattice is in. |
|
251
|
|
|
m : int |
|
252
|
|
|
Number of motif points. Used to determine how many layers of |
|
253
|
|
|
lattice points to put into the initial batch. |
|
254
|
|
|
k : int |
|
255
|
|
|
Parameter of ``nearest_neighbors``, the number of neighbors to |
|
256
|
|
|
find for each point. Used to determine how many layers of |
|
257
|
|
|
lattice points to put into the initial batch. |
|
258
|
|
|
|
|
259
|
|
|
Returns |
|
260
|
|
|
------- |
|
261
|
|
|
initial_integer_lattice : :class:`numpy.ndarray` |
|
262
|
|
|
A collection of integer lattice points. Consists of the first |
|
263
|
|
|
few layers generated by ``integer_lattice_generator`` (number of |
|
264
|
|
|
layers depends on m, k). |
|
265
|
|
|
integer_lattice_generator |
|
266
|
|
|
A generator for integer lattice points more distant than those |
|
267
|
|
|
in ``initial_integer_lattice``. |
|
268
|
|
|
""" |
|
269
|
|
|
|
|
270
|
|
|
int_lattice_generator = iter(_integer_lattice_generator(dims)) |
|
271
|
|
|
layers = [next(int_lattice_generator)] |
|
272
|
|
|
n_points = 1 |
|
273
|
|
|
while n_points * m <= k: |
|
274
|
|
|
layer = next(int_lattice_generator) |
|
275
|
|
|
n_points += layer.shape[0] |
|
276
|
|
|
layers.append(layer) |
|
277
|
|
|
layers.append(next(int_lattice_generator)) |
|
278
|
|
|
return layers, int_lattice_generator |
|
279
|
|
|
|
|
280
|
|
|
|
|
281
|
|
|
def _memoized_generator(generator_function: Callable) -> Callable: |
|
282
|
|
|
"""Caches results of a generator.""" |
|
283
|
|
|
cache = {} |
|
284
|
|
|
|
|
285
|
|
|
@functools.wraps(generator_function) |
|
286
|
|
|
def wrapper(*args) -> Iterable: |
|
287
|
|
|
if args not in cache: |
|
|
|
|
|
|
288
|
|
|
cache[args] = generator_function(*args) |
|
289
|
|
|
cache[args], r = tee(cache[args]) |
|
290
|
|
|
return r |
|
291
|
|
|
|
|
292
|
|
|
return wrapper |
|
293
|
|
|
|
|
294
|
|
|
|
|
295
|
|
|
@_memoized_generator |
|
296
|
|
|
def _integer_lattice_generator(dims: int) -> Iterable[FloatArray]: |
|
297
|
|
|
"""Generate batches of integer lattice points. Each yield gives all |
|
298
|
|
|
points (that have not been yielded) in a sphere radius d centered at |
|
299
|
|
|
0; d starts at 0 and increments by 1 on each yield. |
|
300
|
|
|
|
|
301
|
|
|
Parameters |
|
302
|
|
|
---------- |
|
303
|
|
|
dims : int |
|
304
|
|
|
The dimension of Euclidean space of the lattice. |
|
305
|
|
|
|
|
306
|
|
|
Yields |
|
307
|
|
|
------- |
|
308
|
|
|
:class:`numpy.ndarray` |
|
309
|
|
|
Yields arrays of integer lattice points in `dims`-dimensional |
|
310
|
|
|
Euclidean space. |
|
311
|
|
|
""" |
|
312
|
|
|
|
|
313
|
|
|
d = 0 |
|
314
|
|
|
if dims == 1: |
|
315
|
|
|
yield np.zeros((1, 1), dtype=np.float64) |
|
316
|
|
|
while True: |
|
317
|
|
|
d += 1 |
|
318
|
|
|
yield np.array([[-d], [d]], dtype=np.float64) |
|
319
|
|
|
|
|
320
|
|
|
ymax = {} |
|
321
|
|
|
while True: |
|
322
|
|
|
positive_int_lattice = [] |
|
323
|
|
|
while True: |
|
324
|
|
|
batch = False |
|
325
|
|
|
for xy in product(range(d + 1), repeat=dims - 1): |
|
326
|
|
|
if xy not in ymax: |
|
327
|
|
|
ymax[xy] = 0 |
|
328
|
|
|
if sum(i**2 for i in xy) + ymax[xy] ** 2 <= d**2: |
|
329
|
|
|
positive_int_lattice.append((*xy, ymax[xy])) |
|
330
|
|
|
batch = True |
|
331
|
|
|
ymax[xy] += 1 |
|
332
|
|
|
if not batch: |
|
333
|
|
|
break |
|
334
|
|
|
pos_int_lat = np.array(positive_int_lattice, dtype=np.float64) |
|
335
|
|
|
yield _reflect_positive_integer_lattice(pos_int_lat) |
|
336
|
|
|
d += 1 |
|
337
|
|
|
|
|
338
|
|
|
|
|
339
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
340
|
|
|
def _reflect_positive_integer_lattice(positive_int_lattice: FloatArray) -> FloatArray: |
|
341
|
|
|
"""Reflect points in the positive quadrant across all combinations |
|
342
|
|
|
of axes without duplicating points that are invariant under |
|
343
|
|
|
reflections. |
|
344
|
|
|
""" |
|
345
|
|
|
|
|
346
|
|
|
dims = positive_int_lattice.shape[-1] |
|
347
|
|
|
batches = [] |
|
348
|
|
|
batches.extend(positive_int_lattice) |
|
349
|
|
|
|
|
350
|
|
|
for n_reflections in range(1, dims + 1): |
|
351
|
|
|
axes = np.arange(n_reflections, dtype=np.int64) |
|
352
|
|
|
off_axes = (positive_int_lattice[:, axes] == 0).sum(axis=-1) == 0 |
|
353
|
|
|
int_lattice = positive_int_lattice[off_axes] |
|
354
|
|
|
int_lattice[:, axes] *= -1 |
|
355
|
|
|
batches.extend(int_lattice) |
|
356
|
|
|
|
|
357
|
|
|
while True: |
|
358
|
|
|
i = n_reflections - 1 |
|
359
|
|
|
for _ in range(n_reflections): |
|
360
|
|
|
if axes[i] != i + dims - n_reflections: |
|
361
|
|
|
break |
|
362
|
|
|
i -= 1 |
|
363
|
|
|
else: |
|
364
|
|
|
break |
|
365
|
|
|
axes[i] += 1 |
|
366
|
|
|
for j in range(i + 1, n_reflections): |
|
367
|
|
|
axes[j] = axes[j - 1] + 1 |
|
368
|
|
|
|
|
369
|
|
|
off_axes = (positive_int_lattice[:, axes] == 0).sum(axis=-1) == 0 |
|
370
|
|
|
int_lattice = positive_int_lattice[off_axes] |
|
371
|
|
|
int_lattice[:, axes] *= -1 |
|
372
|
|
|
batches.extend(int_lattice) |
|
373
|
|
|
|
|
374
|
|
|
int_lattice = np.empty(shape=(len(batches), dims), dtype=np.float64) |
|
375
|
|
|
for i in range(len(batches)): |
|
376
|
|
|
int_lattice[i] = batches[i] |
|
377
|
|
|
return int_lattice |
|
378
|
|
|
|
|
379
|
|
|
|
|
380
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
381
|
|
|
def _lattice_to_cloud(motif: FloatArray, lattice: FloatArray) -> FloatArray: |
|
382
|
|
|
"""Create a cloud of points from a periodic set with ``motif``, |
|
383
|
|
|
and a collection of lattice points ``lattice``. |
|
384
|
|
|
""" |
|
385
|
|
|
m, dims = motif.shape |
|
386
|
|
|
n_lat_points = lattice.shape[0] |
|
387
|
|
|
layer = np.empty((m * n_lat_points, dims), dtype=np.float64) |
|
388
|
|
|
i = 0 |
|
389
|
|
|
for lat_i in range(n_lat_points): |
|
390
|
|
|
for mot_i in range(m): |
|
391
|
|
|
for dim in range(dims): |
|
392
|
|
|
layer[i, dim] = motif[mot_i, dim] + lattice[lat_i, dim] |
|
393
|
|
|
i += 1 |
|
394
|
|
|
return layer |
|
395
|
|
|
|
|
396
|
|
|
|
|
397
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
398
|
|
|
def _cdist_sqeulcidean(XA, XB): |
|
399
|
|
|
mA, dims = XA.shape |
|
400
|
|
|
mB = XB.shape[0] |
|
401
|
|
|
dm = np.empty((mA, mB), np.float64) |
|
402
|
|
|
for i in range(mA): |
|
403
|
|
|
for j in range(mB): |
|
404
|
|
|
v = 0.0 |
|
405
|
|
|
for d in range(dims): |
|
406
|
|
|
v += (XA[i, d] - XB[j, d]) ** 2 |
|
407
|
|
|
dm[i, j] = v |
|
408
|
|
|
return dm |
|
409
|
|
|
|
|
410
|
|
|
|
|
411
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
412
|
|
|
def _where_sq_sum_lt_bound(XA, bound): |
|
413
|
|
|
"""Returns an array of bools such that |
|
414
|
|
|
XA[_where_sq_sum_lt_bound(XA, bound)] contains only points whose |
|
415
|
|
|
squared sum is < bound, equivalent to |
|
416
|
|
|
XA[(lattice ** 2).sum(axis=-1) < bound].""" |
|
417
|
|
|
m, dims = XA.shape |
|
418
|
|
|
ret = np.full((m,), fill_value=True, dtype=np.bool_) |
|
419
|
|
|
for i in range(m): |
|
420
|
|
|
v = 0.0 |
|
421
|
|
|
for dim in range(dims): |
|
422
|
|
|
v += XA[i, dim] ** 2 |
|
423
|
|
|
if v >= bound: |
|
424
|
|
|
ret[i] = False |
|
425
|
|
|
return ret |
|
426
|
|
|
|
|
427
|
|
|
|
|
428
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
429
|
|
|
def _merge_sorted_arrays(dists: FloatArray, dists_: FloatArray) -> FloatArray: |
|
430
|
|
|
"""Merge two 2D arrays with sorted rows into one sorted array with |
|
431
|
|
|
same number of columns as ``dists``. Optimised assuming that only a |
|
432
|
|
|
few elements at the end of each row of ``dists`` needs to be |
|
433
|
|
|
changed. |
|
434
|
|
|
""" |
|
435
|
|
|
|
|
436
|
|
|
m, n_new_points = dists_.shape |
|
437
|
|
|
ret = np.copy(dists) |
|
438
|
|
|
|
|
439
|
|
|
for i in range(m): |
|
440
|
|
|
# Traverse dists[i] backwards until value smaller than dists_[i, 0] |
|
441
|
|
|
j = -1 |
|
442
|
|
|
dp_ = 0 |
|
443
|
|
|
dist_ = dists_[i, dp_] |
|
444
|
|
|
while True: |
|
445
|
|
|
if dists[i, j] <= dist_: |
|
446
|
|
|
j += 1 |
|
447
|
|
|
break |
|
448
|
|
|
j -= 1 |
|
449
|
|
|
|
|
450
|
|
|
# If dists_[i, 0] >= dists[i, -1], no need to insert |
|
451
|
|
|
if j == 0: |
|
452
|
|
|
continue |
|
453
|
|
|
|
|
454
|
|
|
# dp points to dists[i], dp_ points to dists_[i], j points to ret[i] |
|
455
|
|
|
# Fill ret with the larger value, increment pointers and repeat |
|
456
|
|
|
dp = j |
|
457
|
|
|
dist = dists[i, dp] |
|
458
|
|
|
|
|
459
|
|
|
while j < 0: |
|
460
|
|
|
if dist <= dist_: |
|
461
|
|
|
ret[i, j] = dist |
|
462
|
|
|
dp += 1 |
|
463
|
|
|
dist = dists[i, dp] |
|
464
|
|
|
else: |
|
465
|
|
|
ret[i, j] = dist_ |
|
466
|
|
|
dp_ += 1 |
|
467
|
|
|
if dp_ < n_new_points: |
|
468
|
|
|
dist_ = dists_[i, dp_] |
|
469
|
|
|
else: # ran out of points in dists_ |
|
470
|
|
|
dist_ = np.inf |
|
471
|
|
|
j += 1 |
|
472
|
|
|
|
|
473
|
|
|
return ret |
|
474
|
|
|
|
|
475
|
|
|
|
|
476
|
|
|
@numba.njit(cache=True, fastmath=True) |
|
477
|
|
|
def _merge_sorted_arrays_and_inds( |
|
478
|
|
|
dists: FloatArray, dists_: FloatArray, inds: UIntArray, inds_: UIntArray |
|
479
|
|
|
) -> Tuple[FloatArray, UIntArray]: |
|
480
|
|
|
"""Similar to _merge_sorted_arrays, but also merges two arrays |
|
481
|
|
|
``inds`` and ``inds_`` with the same pattern for |
|
482
|
|
|
``nearest_neighbors_data``. |
|
483
|
|
|
""" |
|
484
|
|
|
|
|
485
|
|
|
m, n_new_points = dists_.shape |
|
486
|
|
|
ret_dists = np.copy(dists) |
|
487
|
|
|
ret_inds = np.copy(inds) |
|
488
|
|
|
|
|
489
|
|
|
for i in range(m): |
|
490
|
|
|
j = -1 |
|
491
|
|
|
dp_ = 0 |
|
492
|
|
|
dist_ = dists_[i, dp_] |
|
493
|
|
|
p_ = inds_[i, dp_] |
|
494
|
|
|
|
|
495
|
|
|
while True: |
|
496
|
|
|
if dists[i, j] <= dist_: |
|
497
|
|
|
j += 1 |
|
498
|
|
|
break |
|
499
|
|
|
j -= 1 |
|
500
|
|
|
|
|
501
|
|
|
if j == 0: |
|
502
|
|
|
continue |
|
503
|
|
|
|
|
504
|
|
|
dp = j |
|
505
|
|
|
dist = dists[i, dp] |
|
506
|
|
|
p = inds[i, dp] |
|
507
|
|
|
|
|
508
|
|
|
while j < 0: |
|
509
|
|
|
if dist <= dist_: |
|
510
|
|
|
ret_dists[i, j] = dist |
|
511
|
|
|
ret_inds[i, j] = p |
|
512
|
|
|
dp += 1 |
|
513
|
|
|
dist = dists[i, dp] |
|
514
|
|
|
p = inds[i, dp] |
|
515
|
|
|
else: |
|
516
|
|
|
ret_dists[i, j] = dist_ |
|
517
|
|
|
ret_inds[i, j] = p_ |
|
518
|
|
|
dp_ += 1 |
|
519
|
|
|
if dp_ < n_new_points: |
|
520
|
|
|
dist_ = dists_[i, dp_] |
|
521
|
|
|
p_ = inds_[i, dp_] |
|
522
|
|
|
else: |
|
523
|
|
|
dist_ = np.inf |
|
524
|
|
|
j += 1 |
|
525
|
|
|
|
|
526
|
|
|
return ret_dists, ret_inds |
|
527
|
|
|
|
|
528
|
|
|
|
|
529
|
|
|
def nearest_neighbors_minval( |
|
530
|
|
|
motif: FloatArray, cell: FloatArray, x: FloatArray, min_val: float |
|
531
|
|
|
) -> Tuple[FloatArray, FloatArray, UIntArray]: |
|
532
|
|
|
"""Return the same ``dists``/PDD matrix as ``nearest_neighbors``, |
|
533
|
|
|
but with enough columns such that all values in the last column are |
|
534
|
|
|
at least ``min_val``. |
|
535
|
|
|
""" |
|
536
|
|
|
|
|
537
|
|
|
full_cloud, all_sqdists = [], [] |
|
538
|
|
|
m, dims = motif.shape |
|
539
|
|
|
|
|
540
|
|
|
int_lattice, int_lat_generator = _integer_lattice_batches(dims, m, 1) |
|
541
|
|
|
cloud = _lattice_to_cloud(motif, int_lattice @ cell) |
|
542
|
|
|
full_cloud.append(cloud) |
|
543
|
|
|
sqdists = _cdist_sqeulcidean(x, cloud) |
|
544
|
|
|
motif_diam = np.sqrt(sqdists[:, :m].max()) |
|
545
|
|
|
all_sqdists.append(sqdists) |
|
546
|
|
|
max_sqd = min_val**2 |
|
547
|
|
|
bound = (np.sqrt(max_sqd) + motif_diam) ** 2 |
|
548
|
|
|
|
|
549
|
|
|
while True: |
|
550
|
|
|
lattice = next(int_lat_generator) @ cell |
|
551
|
|
|
lattice = lattice[np.einsum("ij,ij->i", lattice, lattice) < bound] |
|
552
|
|
|
if lattice.size == 0: |
|
553
|
|
|
break |
|
554
|
|
|
|
|
555
|
|
|
cloud = _lattice_to_cloud(motif, lattice) |
|
556
|
|
|
sqdists = _cdist_sqeulcidean(x, cloud) |
|
557
|
|
|
close = sqdists <= max_sqd |
|
558
|
|
|
if not np.any(close): |
|
559
|
|
|
break |
|
560
|
|
|
|
|
561
|
|
|
all_sqdists.append(sqdists) |
|
562
|
|
|
full_cloud.append(cloud) |
|
563
|
|
|
|
|
564
|
|
|
sqdists = np.hstack(all_sqdists) |
|
565
|
|
|
inds = np.argsort(sqdists) |
|
566
|
|
|
sqdists = np.take_along_axis(sqdists, inds, axis=-1) |
|
567
|
|
|
|
|
568
|
|
|
i = np.argmax(np.all(sqdists >= max_sqd, axis=0)) |
|
569
|
|
|
sqdists = sqdists[:, : i + 1] |
|
570
|
|
|
inds = inds[:, : i + 1] |
|
571
|
|
|
|
|
572
|
|
|
return np.sqrt(sqdists), np.concatenate(full_cloud), inds |
|
573
|
|
|
|
|
574
|
|
|
|
|
575
|
|
|
def generate_concentric_cloud( |
|
576
|
|
|
motif: FloatArray, cell: FloatArray |
|
577
|
|
|
) -> Iterable[FloatArray]: |
|
578
|
|
|
"""Generates batches of points from a periodic set given by (motif, |
|
579
|
|
|
cell) which get successively further away from the origin. |
|
580
|
|
|
|
|
581
|
|
|
Each yield gives all points (that have not already been yielded) |
|
582
|
|
|
which lie in a unit cell whose corner lattice point was generated by |
|
583
|
|
|
``generate_integer_lattice(motif.shape[1])``. |
|
584
|
|
|
|
|
585
|
|
|
Parameters |
|
586
|
|
|
---------- |
|
587
|
|
|
motif : :class:`numpy.ndarray` |
|
588
|
|
|
Cartesian representation of the motif, shape (no points, dims). |
|
589
|
|
|
cell : :class:`numpy.ndarray` |
|
590
|
|
|
Cartesian representation of the unit cell, shape (dims, dims). |
|
591
|
|
|
|
|
592
|
|
|
Yields |
|
593
|
|
|
------- |
|
594
|
|
|
:class:`numpy.ndarray` |
|
595
|
|
|
Yields arrays of points from the periodic set. |
|
596
|
|
|
""" |
|
597
|
|
|
|
|
598
|
|
|
int_lat_generator = _integer_lattice_generator(cell.shape[0]) |
|
599
|
|
|
for layer in int_lat_generator: |
|
600
|
|
|
yield _lattice_to_cloud(motif, layer @ cell) |
|
601
|
|
|
|