1
|
|
|
"""Functions for calculating the average minimum distance (AMD) and |
2
|
|
|
point-wise distance distribution (PDD) isometric invariants of |
3
|
|
|
periodic crystals and finite sets. |
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
import collections |
7
|
|
|
from typing import Tuple, Union |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
import numpy.typing as npt |
11
|
|
|
from scipy.spatial.distance import pdist, squareform |
12
|
|
|
from scipy.special import factorial |
13
|
|
|
|
14
|
|
|
from .periodicset import PeriodicSet |
15
|
|
|
from ._nearest_neighbours import nearest_neighbours, nearest_neighbours_minval |
16
|
|
|
from .utils import diameter |
17
|
|
|
|
18
|
|
|
__all__ = [ |
19
|
|
|
'AMD', 'PDD', 'PDD_to_AMD', 'AMD_finite', 'PDD_finite', |
20
|
|
|
'PDD_reconstructable', 'PPC', 'AMD_estimate' |
21
|
|
|
] |
22
|
|
|
|
23
|
|
|
PeriodicSetType = Union[PeriodicSet, Tuple[npt.NDArray, npt.NDArray]] |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def AMD(periodic_set: PeriodicSetType, k: int) -> npt.NDArray[np.float64]: |
27
|
|
|
"""Return the AMD of a periodic set (crystal) up to k. |
28
|
|
|
|
29
|
|
|
Parameters |
30
|
|
|
---------- |
31
|
|
|
periodic_set : |
32
|
|
|
A periodic set represented by a |
33
|
|
|
:class:`amd.PeriodicSet <.periodicset.PeriodicSet>` or by a |
34
|
|
|
tuple of :class:`numpy.ndarray` s (motif, cell) with coordinates |
35
|
|
|
in Cartesian form and a square unit cell. |
36
|
|
|
k : int |
37
|
|
|
Length of the AMD returned; the number of neighbours considered |
38
|
|
|
for each atom in the unit cell to make the AMD. |
39
|
|
|
|
40
|
|
|
Returns |
41
|
|
|
------- |
42
|
|
|
:class:`numpy.ndarray` |
43
|
|
|
A :class:`numpy.ndarray` shape ``(k, )``, the AMD of |
44
|
|
|
``periodic_set`` up to k. |
45
|
|
|
|
46
|
|
|
Examples |
47
|
|
|
-------- |
48
|
|
|
Make list of AMDs with k = 100 for crystals in data.cif:: |
49
|
|
|
|
50
|
|
|
amds = [] |
51
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
52
|
|
|
amds.append(amd.AMD(periodic_set, 100)) |
53
|
|
|
|
54
|
|
|
Make list of AMDs with k = 10 for crystals in these CSD refcode families:: |
55
|
|
|
|
56
|
|
|
amds = [] |
57
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
58
|
|
|
amds.append(amd.AMD(periodic_set, 10)) |
59
|
|
|
|
60
|
|
|
Manually pass a periodic set as a tuple (motif, cell):: |
61
|
|
|
|
62
|
|
|
# simple cubic lattice |
63
|
|
|
motif = np.array([[0,0,0]]) |
64
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
65
|
|
|
cubic_amd = amd.AMD((motif, cell), 100) |
66
|
|
|
""" |
67
|
|
|
|
68
|
|
|
motif, cell, asymmetric_unit, weights = _get_structure(periodic_set) |
69
|
|
|
dists, _, _ = nearest_neighbours(motif, cell, asymmetric_unit, k + 1) |
70
|
|
|
return np.average(dists[:, 1:], axis=0, weights=weights) |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
def PDD( |
74
|
|
|
periodic_set: PeriodicSetType, |
75
|
|
|
k: int, |
76
|
|
|
lexsort: bool = True, |
77
|
|
|
collapse: bool = True, |
78
|
|
|
collapse_tol: float = 1e-4, |
79
|
|
|
return_row_groups: bool = False |
80
|
|
|
) -> Union[npt.NDArray[np.float64], Tuple[npt.NDArray[np.float64], list]]: |
81
|
|
|
"""Return the PDD of a periodic set (crystal) up to k. |
82
|
|
|
|
83
|
|
|
Parameters |
84
|
|
|
---------- |
85
|
|
|
periodic_set : |
86
|
|
|
A periodic set represented by a |
87
|
|
|
:class:`amd.PeriodicSet <.periodicset.PeriodicSet>` or by a |
88
|
|
|
tuple of :class:`numpy.ndarray` s (motif, cell) with Cartesian |
89
|
|
|
coordinates and a square matrix representing the unit cell. |
90
|
|
|
k : int |
91
|
|
|
The number of neighbours considered for each atom (point) in the |
92
|
|
|
unit cell. The returned matrix has k + 1 columns, the first |
93
|
|
|
column for weights of rows. |
94
|
|
|
lexsort : bool, default True |
95
|
|
|
Lexicographically order the rows. |
96
|
|
|
collapse: bool, default True |
97
|
|
|
Collapse repeated rows (within tolerance ``collapse_tol``). |
98
|
|
|
collapse_tol: float, default 1e-4 |
99
|
|
|
If two rows have all elements closer than ``collapse_tol``, they |
100
|
|
|
are merged and weights are given to rows in proportion to the |
101
|
|
|
number of times they appeared. |
102
|
|
|
return_row_groups: bool, default False |
103
|
|
|
Return data about which PDD rows correspond to which points. If |
104
|
|
|
True, a tuple is returned ``(pdd, groups)`` where ``groups[i]`` |
105
|
|
|
contains the indices of the point(s) corresponding to |
106
|
|
|
``pdd[i]``. Note that these indices are for the asymmetric unit |
107
|
|
|
of the set, whose indices in ``periodic_set.motif`` are |
108
|
|
|
accessible through ``periodic_set.asymmetric_unit``. |
109
|
|
|
|
110
|
|
|
Returns |
111
|
|
|
------- |
112
|
|
|
pdd : :class:`numpy.ndarray` |
113
|
|
|
A :class:`numpy.ndarray` with k+1 columns, the PDD of |
114
|
|
|
``periodic_set`` up to k. The first column contains the weights |
115
|
|
|
of rows. If ``return_row_groups`` is True, returns a tuple with |
116
|
|
|
types (:class:`numpy.ndarray`, list). |
117
|
|
|
|
118
|
|
|
Examples |
119
|
|
|
-------- |
120
|
|
|
Make list of PDDs with ``k=100`` for crystals in data.cif:: |
121
|
|
|
|
122
|
|
|
pdds = [] |
123
|
|
|
for periodic_set in amd.CifReader('data.cif'): |
124
|
|
|
# do not lexicographically order rows |
125
|
|
|
pdds.append(amd.PDD(periodic_set, 100, lexsort=False)) |
126
|
|
|
|
127
|
|
|
Make list of PDDs with ``k=10`` for crystals in these CSD refcode |
128
|
|
|
families:: |
129
|
|
|
|
130
|
|
|
pdds = [] |
131
|
|
|
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True): |
132
|
|
|
# do not collapse rows |
133
|
|
|
pdds.append(amd.PDD(periodic_set, 10, collapse=False)) |
134
|
|
|
|
135
|
|
|
Manually pass a periodic set as a tuple (motif, cell):: |
136
|
|
|
|
137
|
|
|
# simple cubic lattice |
138
|
|
|
motif = np.array([[0,0,0]]) |
139
|
|
|
cell = np.array([[1,0,0], [0,1,0], [0,0,1]]) |
140
|
|
|
cubic_amd = amd.PDD((motif, cell), 100) |
141
|
|
|
""" |
142
|
|
|
|
143
|
|
|
motif, cell, asymmetric_unit, weights = _get_structure(periodic_set) |
144
|
|
|
dists, _, _ = nearest_neighbours(motif, cell, asymmetric_unit, k + 1) |
145
|
|
|
dists = dists[:, 1:] |
146
|
|
|
groups = [[i] for i in range(len(dists))] |
147
|
|
|
|
148
|
|
|
if collapse: |
149
|
|
|
overlapping = pdist(dists, metric='chebyshev') <= collapse_tol |
150
|
|
|
if overlapping.any(): |
151
|
|
|
groups = _collapse_into_groups(overlapping) |
152
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
153
|
|
|
dists = np.array([ |
154
|
|
|
np.average(dists[group], axis=0) for group in groups |
155
|
|
|
], dtype=np.float64) |
156
|
|
|
|
157
|
|
|
pdd = np.empty(shape=(len(weights), k + 1), dtype=np.float64) |
158
|
|
|
pdd[:, 0] = weights |
159
|
|
|
pdd[:, 1:] = dists |
160
|
|
|
|
161
|
|
|
if lexsort: |
162
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
163
|
|
|
if return_row_groups: |
164
|
|
|
groups = [groups[i] for i in lex_ordering] |
165
|
|
|
pdd = pdd[lex_ordering] |
166
|
|
|
|
167
|
|
|
if return_row_groups: |
168
|
|
|
return pdd, groups |
169
|
|
|
return pdd |
170
|
|
|
|
171
|
|
|
|
172
|
|
|
def PDD_to_AMD(pdd: npt.NDArray) -> npt.NDArray: |
173
|
|
|
"""Calculate an AMD from a PDD. Faster than computing both from |
174
|
|
|
scratch. |
175
|
|
|
|
176
|
|
|
Parameters |
177
|
|
|
---------- |
178
|
|
|
pdd : :class:`numpy.ndarray` |
179
|
|
|
The PDD of a periodic set. |
180
|
|
|
|
181
|
|
|
Returns |
182
|
|
|
------- |
183
|
|
|
:class:`numpy.ndarray` |
184
|
|
|
The AMD of the periodic set. |
185
|
|
|
""" |
186
|
|
|
|
187
|
|
|
return np.average(pdd[:, 1:], weights=pdd[:, 0], axis=0) |
188
|
|
|
|
189
|
|
|
|
190
|
|
|
def AMD_finite(motif: npt.NDArray) -> npt.NDArray: |
191
|
|
|
"""Return the AMD of a finite m-point set up to k = m - 1. |
192
|
|
|
|
193
|
|
|
Parameters |
194
|
|
|
---------- |
195
|
|
|
motif : :class:`numpy.ndarray` |
196
|
|
|
Coordinates of a set of points. |
197
|
|
|
|
198
|
|
|
Returns |
199
|
|
|
------- |
200
|
|
|
:class:`numpy.ndarray` |
201
|
|
|
A vector shape (motif.shape[0] - 1, ), the AMD of ``motif``. |
202
|
|
|
|
203
|
|
|
Examples |
204
|
|
|
-------- |
205
|
|
|
The (L-infinity) AMD distance between finite trapezium and kite |
206
|
|
|
point sets:: |
207
|
|
|
|
208
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
209
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
210
|
|
|
|
211
|
|
|
trap_amd = amd.AMD_finite(trapezium) |
212
|
|
|
kite_amd = amd.AMD_finite(kite) |
213
|
|
|
|
214
|
|
|
l_inf_dist = np.amax(np.abs(trap_amd - kite_amd)) |
215
|
|
|
""" |
216
|
|
|
|
217
|
|
|
dm = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
218
|
|
|
return np.average(dm, axis=0) |
219
|
|
|
|
220
|
|
|
|
221
|
|
|
def PDD_finite( |
222
|
|
|
motif: np.ndarray, |
223
|
|
|
lexsort: bool = True, |
224
|
|
|
collapse: bool = True, |
225
|
|
|
collapse_tol: float = 1e-4, |
226
|
|
|
return_row_groups: bool = False |
227
|
|
|
) -> Union[npt.NDArray[np.float64], Tuple[npt.NDArray[np.float64], list]]: |
228
|
|
|
"""Return the PDD of a finite m-point set up to k = m - 1. |
229
|
|
|
|
230
|
|
|
Parameters |
231
|
|
|
---------- |
232
|
|
|
motif : :class:`numpy.ndarray` |
233
|
|
|
Coordinates of a set of points. |
234
|
|
|
lexsort : bool, default True |
235
|
|
|
Whether or not to lexicographically order the rows. |
236
|
|
|
collapse: bool, default True |
237
|
|
|
Whether or not to collapse repeated rows (within tolerance |
238
|
|
|
``collapse_tol``). |
239
|
|
|
collapse_tol: float, default 1e-4 |
240
|
|
|
If two rows have all elements closer than ``collapse_tol``, they |
241
|
|
|
are merged and weights are given to rows in proportion to the |
242
|
|
|
number of times they appeared. |
243
|
|
|
return_row_groups: bool, default False |
244
|
|
|
Whether to return data about which PDD rows correspond to which |
245
|
|
|
points. If True, a tuple is returned ``(pdd, groups)`` where |
246
|
|
|
``groups[i]`` contains the indices of the point(s) corresponding |
247
|
|
|
to ``pdd[i]``. |
248
|
|
|
|
249
|
|
|
Returns |
250
|
|
|
------- |
251
|
|
|
pdd : :class:`numpy.ndarray` |
252
|
|
|
A :class:`numpy.ndarray` with m columns (where m is the number |
253
|
|
|
of points), the PDD of ``motif``. The first column contains the |
254
|
|
|
weights of rows. |
255
|
|
|
|
256
|
|
|
Examples |
257
|
|
|
-------- |
258
|
|
|
Find PDD distance between finite trapezium and kite point sets:: |
259
|
|
|
|
260
|
|
|
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]]) |
261
|
|
|
kite = np.array([[0,0],[1,1],[1,-1],[4,0]]) |
262
|
|
|
|
263
|
|
|
trap_pdd = amd.PDD_finite(trapezium) |
264
|
|
|
kite_pdd = amd.PDD_finite(kite) |
265
|
|
|
|
266
|
|
|
dist = amd.EMD(trap_pdd, kite_pdd) |
267
|
|
|
""" |
268
|
|
|
|
269
|
|
|
m = motif.shape[0] |
270
|
|
|
dists = np.sort(squareform(pdist(motif)), axis=-1)[:, 1:] |
271
|
|
|
weights = np.full((m, ), 1 / m) |
272
|
|
|
groups = [[i] for i in range(len(dists))] |
273
|
|
|
|
274
|
|
|
if collapse: |
275
|
|
|
overlapping = pdist(dists, metric='chebyshev') |
276
|
|
|
overlapping = overlapping <= collapse_tol |
277
|
|
|
if overlapping.any(): |
278
|
|
|
groups = _collapse_into_groups(overlapping) |
279
|
|
|
weights = np.array([np.sum(weights[group]) for group in groups]) |
280
|
|
|
dists = np.array([ |
281
|
|
|
np.average(dists[group], axis=0) for group in groups |
282
|
|
|
]) |
283
|
|
|
|
284
|
|
|
pdd = np.empty(shape=(len(weights), m), dtype=np.float64) |
285
|
|
|
pdd[:, 0] = weights |
286
|
|
|
pdd[:, 1:] = dists |
287
|
|
|
|
288
|
|
|
if lexsort: |
289
|
|
|
lex_ordering = np.lexsort(np.rot90(dists)) |
290
|
|
|
groups = [groups[i] for i in lex_ordering] |
291
|
|
|
pdd = pdd[lex_ordering] |
292
|
|
|
|
293
|
|
|
if return_row_groups: |
294
|
|
|
return pdd, groups |
295
|
|
|
return pdd |
296
|
|
|
|
297
|
|
|
|
298
|
|
|
def PDD_reconstructable( |
299
|
|
|
periodic_set: PeriodicSetType, |
300
|
|
|
lexsort: bool = True |
301
|
|
|
) -> npt.NDArray[np.float64]: |
302
|
|
|
"""Return the PDD of a periodic set with `k` (number of columns) |
303
|
|
|
large enough such that the periodic set can be reconstructed from |
304
|
|
|
the PDD. |
305
|
|
|
|
306
|
|
|
Parameters |
307
|
|
|
---------- |
308
|
|
|
periodic_set : |
309
|
|
|
A periodic set represented by a |
310
|
|
|
:class:`amd.PeriodicSet <.periodicset.PeriodicSet>` or by a |
311
|
|
|
tuple of :class:`numpy.ndarray` s (motif, cell) with coordinates |
312
|
|
|
in Cartesian form and a square unit cell. |
313
|
|
|
lexsort : bool, default True |
314
|
|
|
Whether or not to lexicographically order the rows. |
315
|
|
|
|
316
|
|
|
Returns |
317
|
|
|
------- |
318
|
|
|
pdd : :class:`numpy.ndarray` |
319
|
|
|
The PDD of ``periodic_set`` with enough columns to be |
320
|
|
|
reconstructable. |
321
|
|
|
""" |
322
|
|
|
|
323
|
|
|
motif, cell, _, _ = _get_structure(periodic_set) |
324
|
|
|
dims = cell.shape[0] |
325
|
|
|
|
326
|
|
|
if dims not in (2, 3): |
327
|
|
|
raise ValueError( |
328
|
|
|
'Reconstructing from PDD is only possible for 2 and 3 dimensions.' |
329
|
|
|
) |
330
|
|
|
|
331
|
|
|
min_val = diameter(cell) * 2 |
332
|
|
|
pdd, _, _ = nearest_neighbours_minval(motif, cell, min_val) |
333
|
|
|
|
334
|
|
|
if lexsort: |
335
|
|
|
lex_ordering = np.lexsort(np.rot90(pdd)) |
336
|
|
|
pdd = pdd[lex_ordering] |
337
|
|
|
|
338
|
|
|
return pdd |
339
|
|
|
|
340
|
|
|
|
341
|
|
|
def PPC(periodic_set: PeriodicSetType) -> float: |
342
|
|
|
r"""Return the point packing coefficient (PPC) of ``periodic_set``. |
343
|
|
|
|
344
|
|
|
The PPC is a constant of any periodic set determining the |
345
|
|
|
asymptotic behaviour of its AMD and PDD. As |
346
|
|
|
:math:`k \rightarrow \infty`, the ratio |
347
|
|
|
:math:`\text{AMD}_k / \sqrt[n]{k}` converges to the PPC, as does any |
348
|
|
|
row of its PDD. |
349
|
|
|
|
350
|
|
|
For a unit cell :math:`U` and :math:`m` motif points in :math:`n` |
351
|
|
|
dimensions, |
352
|
|
|
|
353
|
|
|
.. math:: |
354
|
|
|
|
355
|
|
|
\text{PPC} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}} |
356
|
|
|
|
357
|
|
|
where :math:`V_n` is the volume of a unit sphere in :math:`n` |
358
|
|
|
dimensions. |
359
|
|
|
|
360
|
|
|
Parameters |
361
|
|
|
---------- |
362
|
|
|
periodic_set : |
363
|
|
|
A periodic set represented by a |
364
|
|
|
:class:`amd.PeriodicSet <.periodicset.PeriodicSet>` or by a |
365
|
|
|
tuple of :class:`numpy.ndarray` s (motif, cell) with coordinates |
366
|
|
|
in Cartesian form. |
367
|
|
|
|
368
|
|
|
Returns |
369
|
|
|
------- |
370
|
|
|
ppc : float |
371
|
|
|
The PPC of ``periodic_set``. |
372
|
|
|
""" |
373
|
|
|
|
374
|
|
|
motif, cell, _, _ = _get_structure(periodic_set) |
375
|
|
|
m, n = motif.shape |
376
|
|
|
t = int(n // 2) |
377
|
|
|
|
378
|
|
|
if n % 2 == 0: |
379
|
|
|
unit_sphere_vol = (np.pi ** t) / factorial(t) |
380
|
|
|
else: |
381
|
|
|
unit_sphere_vol = (2 * factorial(t) * (4 * np.pi) ** t) / factorial(n) |
382
|
|
|
|
383
|
|
|
return (np.linalg.det(cell) / (m * unit_sphere_vol)) ** (1.0 / n) |
384
|
|
|
|
385
|
|
|
|
386
|
|
|
def AMD_estimate( |
387
|
|
|
periodic_set: PeriodicSetType, |
388
|
|
|
k: int |
389
|
|
|
) -> npt.NDArray[np.float64]: |
390
|
|
|
r"""Calculate an estimate of AMD based on the PPC. |
391
|
|
|
|
392
|
|
|
Parameters |
393
|
|
|
---------- |
394
|
|
|
periodic_set : |
395
|
|
|
A periodic set represented by a |
396
|
|
|
:class:`amd.PeriodicSet <.periodicset.PeriodicSet>` or by a |
397
|
|
|
tuple of :class:`numpy.ndarray` s (motif, cell) with coordinates |
398
|
|
|
in Cartesian form. |
399
|
|
|
|
400
|
|
|
Returns |
401
|
|
|
------- |
402
|
|
|
amd_est : :class:`numpy.ndarray` |
403
|
|
|
An array shape (k, ), where ``amd_est[i]`` |
404
|
|
|
:math:`= \text{PPC} \sqrt[n]{k}` in n dimensions. |
405
|
|
|
""" |
406
|
|
|
|
407
|
|
|
motif, cell, _, _ = _get_structure(periodic_set) |
408
|
|
|
n = cell.shape[0] |
409
|
|
|
k_root = np.power(np.arange(1, k + 1, dtype=np.float64), 1.0 / n) |
410
|
|
|
return PPC((motif, cell)) * k_root |
411
|
|
|
|
412
|
|
|
|
413
|
|
|
def _get_structure(periodic_set: PeriodicSetType) -> Tuple[npt.NDArray, ...]: |
414
|
|
|
"""Extract the motif and cell, and if present the asymmetric unit |
415
|
|
|
and scaled multiplicities, from a periodic set. ``periodic_set`` can |
416
|
|
|
be a :class:`amd.PeriodicSet <.periodicset.PeriodicSet>`, or a tuple |
417
|
|
|
of :class:`numpy.ndarray` s (motif, cell). |
418
|
|
|
""" |
419
|
|
|
|
420
|
|
|
asymmetric_unit = None |
421
|
|
|
weights = None |
422
|
|
|
|
423
|
|
|
if isinstance(periodic_set, PeriodicSet): |
424
|
|
|
motif, cell = periodic_set.motif, periodic_set.cell |
425
|
|
|
asym_unit_inds = periodic_set.asymmetric_unit |
426
|
|
|
wyc_muls = periodic_set.wyckoff_multiplicities |
427
|
|
|
if asym_unit_inds is not None and wyc_muls is not None: |
428
|
|
|
asymmetric_unit = motif[asym_unit_inds] |
429
|
|
|
weights = wyc_muls / np.sum(wyc_muls) |
430
|
|
|
else: |
431
|
|
|
motif, cell = periodic_set |
432
|
|
|
|
433
|
|
|
if asymmetric_unit is None or weights is None: |
434
|
|
|
asymmetric_unit = motif |
435
|
|
|
weights = np.full((len(motif), ), 1 / len(motif), dtype=np.float64) |
436
|
|
|
|
437
|
|
|
return motif, cell, asymmetric_unit, weights |
438
|
|
|
|
439
|
|
|
|
440
|
|
|
def _collapse_into_groups(overlapping: npt.NDArray) -> list: |
441
|
|
|
"""Return a list of groups of indices where all indices in the same |
442
|
|
|
group overlap. ``overlapping`` indicates for each pair of items in a |
443
|
|
|
set whether or not the items overlap, in the shape of a condensed |
444
|
|
|
distance matrix. |
445
|
|
|
""" |
446
|
|
|
|
447
|
|
|
overlapping = squareform(overlapping) |
448
|
|
|
group_nums = {} |
449
|
|
|
group = 0 |
450
|
|
|
for i, row in enumerate(overlapping): |
451
|
|
|
if i not in group_nums: |
452
|
|
|
group_nums[i] = group |
453
|
|
|
group += 1 |
454
|
|
|
|
455
|
|
|
for j in np.argwhere(row).T[0]: |
456
|
|
|
if j not in group_nums: |
457
|
|
|
group_nums[j] = group_nums[i] |
458
|
|
|
|
459
|
|
|
groups = collections.defaultdict(list) |
460
|
|
|
for row_ind, group_num in sorted(group_nums.items()): |
461
|
|
|
groups[group_num].append(row_ind) |
462
|
|
|
groups = list(groups.values()) |
463
|
|
|
|
464
|
|
|
return groups |
465
|
|
|
|